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INTEGER TURBINE BALANCING PROBLEM "’

The integer turbine balancing problem P(n) requires: Place n points with
integer weights 1,2,3,...,n equidistantly on the circle in such a way that
their centre of mass is as close to the centre of the circle as possible. In this
paper it is shown that balanced solutions of this problem exist for all values
of n which are not powers of a prime.

Key words: combinatorial optimization, turbine balancing problem, ba-
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In [2| we proposed a local optimization procedure for solving turbine
balancing problem. To compare Mosevich’s Monte Carlo method 3] and our
local optimization procedure, both were applied to the following artificial
integer turbine balancing problem P(n):

Place n points with integer weights 1,2,3, ... n equidistantly on the
circle in such a way that their centre of mass is as close to the centre
of the circle as possible.

It was surprising that for some values of n it was possible to obtain solutions
which are in perfect balance. To get some insight into the nature of the
balanced solutions the integer turbine balancing problem was solved by a
complete search for n from 3 to 10. There are two balanced solutions (up
to rotations and reflections) for n = 6 (see Fig. (1) and Fig. (2)):

145236 153426

and 24 balanced solutions for n = 10 (the first and the fifth solutions are

(*) This work was supported in part by the Research Council of Slovenia, Yugoslavia.
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represented in Fig. (3) and Fig. (4)):

1 4 5 8 9 2 3 6 7 10 1 47 6 9 2 3 8 5 10
16 3 8 9 2 5 4 7 10 1 6 7 4 9 2 5 8 3 10
17 3 9 5 6 2 8 4 10 1.7 4 8 5 6 2 9 3 10
1 8 2 9 5 6 3 7 4 10 1 8 3 6 9 2 7 4 5 10
1 8 4 75 6 3 9 2 10 1 8 5 4 9 2 7 6 3 10
19 2 8 5 6 4 7 3 10 19 3 7 5 6 4 8 2 10
2 6 3 95 7 1 8 4 10 2 6 4 8 5 7 1 9 3 10
2 81 9 5 7 3 6 4 10 2 91 8 5 7 4 6 3 10
3 2 5 8 9 4 1 6 7 10 3 27 6 9 4 1 8 5 10
36 1 8 9 4 5 2 7 10 3 6 2 9 5 8 1 7 4 10
37 1 9 5 8 2 6 4 10 3 8 1 6 9 4 7 2 5 10
5 2 3 8 9 6 1 4 7 10 5 4 1 8 9 6 3 2 7 10

The following two balanced solutions for n = 12 and n = 14
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were obtained by local optimization.

This turns the integer turbine balancing problem into an interesting
combinatorial problem. Let us make some observations about it.

There is an interesting reformulation of the integer turbine balancing
problem, pointed out by Ante Graovac:

Find all equiangular n-gons with edges of integer lengfhs from 1 to n.

&

Ficure (1) FIcUure (2)
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Ficure (4)

Examples of balanced solutions

FIGURE (5)

Balanced solution and
corresponding equiangular n-gon

For example, to the balanced solution from Fig. (2) corresponds an equian-
gular hexagon represented in Fig. (5).

The balanced solutions were obtained by computations with real num-
bers. Are they truly balanced? To decide this it is sufficient to find two
independent axes of balance which intersect in the centre of the circle. For
example, in the solution for n = 10, represented in Figure 3, the axes 6-5
(10+1=2+9,74+4=3+8)and 2-1 (7+6=5+8, 10 +3 =4+9) are
such axes of balance.

For n = 10 there are 24 solutions. Are they related? The affirmative
answer to this question is given by the following transformation:

ProprosiTION 1 — Suppose that the points with weights a,b,c and d form
a quadrangle in the given balanced solution (see Fig. (6)) and that the
equality a +b = ¢ + d holds. Then the solution obtained from it by placing
the weights in the vertices of quadrangle in the order d,c,b and a (see Fig.
(6)) is also balanced.
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Proor — Because the initial solution in Fig. (6) is balanced the axes of
symmetry s and t are axes of balance. The proposed transformation does
not change the corresponding sums on the symmetric lines. Therefore s and
t are also axes of balance for the transformed solution in Fig. (6). Thus
both solutions have the same centre of mass (the intersection of ¢ and s)
which coincides with the centre of the circle: they are both balanced. o

FIGURE (6)

Transformation preserving balanced solutions

Applying this transformation to the solutions for n = 10 it turns out
that there are only two unrelated (nonequivalent) solutions, represented in
Fig. (3) and Fig. (4).

Now we give a formal description of (integer) turbine balancing problem.
It is worthwhile starting in a broader framework. Consider a given set
A C R and let

M=[mg:kel]CA, ={1,...,n}
be a finite multiset of masses. We shall call a solution (for M) a multiset
o= [(mk,px) i k€]

where mp € M and px € R. Additional restrictions on ¢k can be imposed.
For example: the solution is equidistant if and only if

- 2y
WeR:[(pr+9) mod 2r: ke[| = [<ﬂ> mod 275 €[] .
n
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We shall denote by §(A) the set of all solutions over the set A and by S(A)
the corresponding set of equidistant solutions; by [M] we shall restrict the
sets to the solutions for M.

To each solution o we can assign a complex number - the centre of o:

c(o) = kaei“"‘ :

kel
The solution o is balanced if ¢(0) = 0. We shall denote by 8(A) the set of all
balanced solutions over A and by 8y (A) the corresponding set of equidistant
balanced solutions.
The turbine balancing problem can now be expressed as follows:

For a given multiset of masses M and the corresponding set of solu-
tions §[M] determine the solution o* € S[M] for which

le(e*)| = min{|c(o)| : 0 € S[M]}.

We shall denote the set of all such solutions by Min §[M].
We can define some operations on solutions:

Rot(o, %) = [(mu, (px + %) mod 27) : k € I]
a-o=[(a mk k) kel
Invie) = {(ms, (2 ~ok) mod 2x) < k € J]
aindl B bypes of reduttions:
(0,0k) €0 = p-red 0 =0 \[(0, px)]
(mp,p), (Mmy, 04) €0, 0y = @y mod 27 =
m-red o = (o \ [(my, 0,), (my, 0,)]) U[(m,, +m,, 0,)].

We shall denote by m-Red o the solution obtained from o by m-reductions
which can not be further reduced. This solution is uniquely determined.
Now we can define another operation on solutions:

o+n=m-Red (cUn).

All four operations transform balanced solutions into balanced solutions
and, except the sum, equidistant solutions into equidistant solutions. There
are several equalities connecting these operations. For example:

a-(0y+02)=a o, +a- o,
Rot(oy + 02,%) = Rot(o,¥) + Rot (02,v)
Rot(Inv(c), %) = Inv(Rot(o, —1)) .

Several types of equivalences and canonical solutions can also be introduced.
[t 1s easy to prove the following:
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PrOPOSITION 2 — The solution
27k
e(n) = [(1,—7T—> :kE[} i e
n

is balanced and equidistant.
PROPOSITION3 — Let o be any solution of the turbine balancing problem
then

=] 27ms

o = Z Rot <U, —>

s=0 q

is a balanced solution.

There is a simple construction for a balanced solution of P(n) for n of
the form 4k + 2 (see Fig. (7), (8), (9)).

T @/I :

Ficure (9)

Construction forn = 4k + 2
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0a = €(2k +1) + Rot ((-1) e(2k+ 1), %”)

oy = G f: Rot ((43) -6(2),2—7r—s->

n
8=—k

oe=3 (ovt (n+1) eln)).

These solutions can also be represented, as pointed out by Branislava Pe-
runi¢ié¢, as a Mobius ladder graph (see Fig. (10)).

Ficure (10)
Mobius ladder

ProrosiTioNd — Let n be an even number, n # 2*. Then the problem
P(n) has a balanced solution.

Proor — We can write the number n in the form n = 2°(2m + 1). There
are two cases to consider:

Case A. p = 1; the balanced solution can by obtained by a construction
previously described.

Case B. p > 1; in this case we can write n in the form n = 2°712(2m + 1).
Let us denote u = 2" and v = 2(2m+1). Then by a previous construction
there exists a balanced solution o of the problem P(v) and therefore

u—1
. 2
o = g Rot <CT + (sv) - €(v), 2)

=0 &

is also a balanced solution of the problem P(n). 0
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On the basis of computer results for small n we conjectured that there
is no balanced solution of the problem P(n) for n odd. This conjecture was
shown false by Janez Zerovnik who found a balanced solution for n = 15
(see Fig. (11), (12)):

@0

Ficure (11) FIGURE (12)

Construction of balanced solution for n = 15

0=12453€ $,

2 2
0. =0+ Rot o,—ﬂ + Rot U,—l
3 3

2m

2
oy = 0+ Rot <5~e(5), %) + Rot <10 » 45),—;)
This solution can be generalized to the following theorem.

THEOREM1— Let n have the form n = pq, p,q > 1, gcd (p,q) = 1. Then
the problem P(n) has a balanced solution.

Proor — Let 0 € § be any solution of the problem P(p). Then the solution
! 27s
o = Z Rot <a + (sp) - (p) , —)
q
8=0

is a balanced solution of the problem P(n).
To see this we rewrite o’ in the form

a-1 q—1
2 2
o' = E Rot <a , 2) + E Rot <(sp) - e(p), 2) :
= q q
8=0 8=0

The first term is balanced by Proposition 3; the second term is composition
of balanced components. 0
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This theorem tells us that the problem P(n) has a balanced solution
for all n which are not powers of some prime number. Marko Petkovsek
and Aleksander Malni¢ noticed that if we associate to the centre of an
equidistant solution o

c(a)Zkaeix";-'&, I={0,...,n—1}

kel

a polynomial
p(z;0) = Lmk:ck
kel
then for balanced solutions this polynomial is divisible by the minimal poly-
nomial corresponding to the n-th root of unity. This property can be used
to prove the final result:

THEOREM 2 — There is no balanced solution of the problem P(n) for
n = p™, p prime.

The detailed proof and some other results will be published in a separate
paper [1].

Let us conclude with some questions.

1) Are there other ways to transform or combine (balanced) solutions
into balanced solutions?

2) What is the complexity of the integer turbine problem; is there an
efficient procedure to count/generate all balanced solutions of P(n)?

3) Given a multiset of masses M, decide whether P(M) has a balanced
solution!
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