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INDUCTIVE CLASSES OF CUBIC GRAPHS

V. BATAGELJ

ABSTRACT

The inductive definitions of the following classes of (simple) cubic
graphs are given:

— (all) cubic graphs,

— connected cubic graphs,

— 2-connected cubic graphs,

— planar cubic graphs,

— connected planar cubic graphs and

— 3-connected planar cubic graphs.

There are two ways in mathematics to define an infinite class:

— by listing the properties which every object belonging to the class
has to satisfy;

— by describing how the objects belonging to the class can be built
from a given class of basic objects.

In the discrete /algorithmic approach we speak in the first case about
the recognition of objects from the class and in the second case about the
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generation of objects from the class. The class of objects which can be
obtained with generation is often called inductive class.

Following Curry [6] an inductive class [ is defined by giving:

— initial specifications, which define the class B of initial objects
— the basis of I

— generating specifications;, which define the class R  of rules
(modes) of combination — any such rule applied to an appropriate
sequence of objects, already in /, produces an object of 1.

The inductive class 7= Cn (B, R) consists exactly of the objects
which can be obtained (constructed) from the basis by a finite number of
applications of the generating rules.

A powerful proof technique for the properties of objects of the in-
ductive class is the inductive generalization (structural induction): in order
to show that every object from [ has a certain property P, it is sufficient
to establish that:

— every object of the basis has the property P;
— the generating rules preserve the property P.

Another useful property of inductive classes is expressed by the fol-
lowing proposition:

Lemma l. Let I=Cn(B,R) and I'=Cn(B',R') be inductive
classes, such that B' < [ and the generating rules R' can be deduced
in I. Then I'C].

In this paper the inductive definitions of some classes of (simple)
cubic graphs are given. We shall denote with C; (i=0,1,2,3) the class
of i-connected cubic graphs and with Cp; (i=0,1,2,3) the class of
i-connected planar cubic graphs.

Theorem. If we label the following graphs,
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and the following generating rules:
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then

TI1. Cn (B1;P1,P6,P5)=C

T2. Cn (B1;P1,P7,P5)=C

T3, Cn (B1;P1,P2)=C

T4. Cn (B1;P4,P5)=C

TS. Cn(BL;P1,P6)=C

Té6. Cn (B1;P1,P7)=C

T7. Cn (B1,B2,B3;P3)=C

T8. Cn (B1;P4,P8)=C

19, Cn(BL1;PL1,PL6,PL5)=C

T10. Cn (BLL;PL1,PLT, PLS)= C

111, Cn (BL1;PL1,PL6)=C
T12. Cn (BL1; PL1,PL7)=C

T13. Cn(BL1;PL1,PLY,PL10) =

=199 =



where L in the basic graph or rule label means that the corresponding
graph/rule is embedded in the plane, the strict combinatorial description
of these rules can be achieved by attaching a rotation to each vertex.

In the generating rules some of the edges (having only one indicated
endpoint) may coincide. The applications of the rules have to preserve
the simplicity of graphs.

PROOF OF THEOREM

T1. Because the basic graph Bl = K 4 is cubic and the generating
rules P1, P6 and P5 preserve cubicity

I, =Cn(B1;P1, P6, P5) c (&
holds, by inductive generalization.

To prove that also C0 c7 1> let us start by showing that the basis of
the inductive class 1, is self-reproducible:
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The self-reproducibility permits us to consider in the continuation of the
proof only connected (components of) cubic graphs.

Therefore, to show Co Cc I, it is enough to show that every con-
nected cubic graph belongs to /,, or equivalently, that every connected
cubic graph, different from K,, can be reduced (number of vertices) using
the inverse rules of P1 and P6.

Let G be any connected cubic graph. There are two possible cases,
depending on the length of the shortest cycle C in G:

Case I. |C|> 3: we reduce it to case II by repeatedly applying P6 :

Case II. |C|=3: C is a "triangle”. Because G # K, there are two
possibilities:

Case II/1. C is an isolated triangle: we can apply rule P1~.

Case II/2. C has a twin triangle:

Here u and v are non-adjacent vertices because G # K 4+ We distinguish
between the following two cases whether u and v have a third common
neighbour or not.
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Case I1/2.1.

Case I1/2.2.

This completes the proof.

Note. Another way to show [, = C, is based on the fact that rule
P3 is deducible in Is.

T2. By inductive generalization and T1:
I, =Cn(B1;P1,P7,P5)C C, =1, .

The opposite inclusion I, Elz holds by Lemma 1, because rule P6 is
deducible in 1,:
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T3. By inductive generalization I, < Cy- The basis of I, is self-
reproducible:
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Therefore, to show C, € 1,, it is enough to show C, C I,. This
follows by Lemma 1 and T7 because B(/) c I

B2:

I D

and P3 is deducible in 13:
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T4. By inductive generalization I4§C0; and C():I‘,)EI4 by
Lemma 1, because the rules Pl and P2 are deducible in /,:
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Pl:

T3,
T6.
T7.
T8.

See T1.

See T2 and T1.

(Johnson’s definition) See [13], p. 129—133.

Ig c C, follows by inductive generalization, because:
K 4 (basic grélph) is 2-connected;

P4 preserves 2-connectedness: the old vertices remain 2-con-
nected, because no edge was removed; the new pair of vertices is

=2-connected, because each pair of edges lies on a common cycle;

To

each pair of an old and a new vertex is 2-connected, because each
vertex and each edge belong to a common cycle (see [8], p. 65);

P8 preserves 2-connectedness: the old vertices remain 2-con-
nected, because no edge was removed; each pair of new vertices is
2-connected, because they lie on a common cycle; each pair of an
old and a new vertex is 2-connected, because each vertex and each
edge belong to a common cycle.

show that 02 C [8 we shall show that each 2-connected cubic

graph G, different from K,, can be reduced (number of vertices) using
the inverse rules of P4 and P8. To this purpose we have to examine two

cases:
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Case I. The graph G # K, contains a triangle. There are two pos-
sibilities:

Case I/1. If the triangle is isolated then we can apply P4~

P4-

e

Case I/2. The triangle has a twin:

<>

This configuration has (because G 1is 2-connected) two possible exten-
sions, which can be reduced as follows:

Case I/2.1.
: : : : P8~ : :
Case 1/2.2.
P4~

Case II. There is no triangle in graph G. It follows from exercise
6.33 of [10], that in G there exists an edge to which the rule P4~ can be
applied without destroying the 2-connectedness and simplicity of the
graph.

T9: See T1. The proof of T1 is essentially planar.
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T10. See T2 and T1.
T1l. SeeTl.
T12. See T2 and T1.
T13. See [7].

Here follow some open questions for future research in inductive

definitions (of cubic graphs):

— find the inductive definitions of C3 and CP2!

— the generating rule is said to be local if its left side consists of a
connected part of the graph. The rules P2, P3 and P4 are not local.
Find the local inductive definition of C, or prove that no such
definition exists!

— can the inductive definitions be “married”’ with orderly algorithms
[5]?

For inductive definitions of other classes of graphs see [1], [2], [3],

(41, [11], [12], [14].
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