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Abstract

In a multicriteria clustering problem optimization over more than one criterion
is required. The problem can be treated in different ways. In this paper the ag-
glomerative hierarchical method based on decision rules for making decisions under
uncertainty is proposed for solving multicriteria clustering problem. An application
of proposed approach to Rosenberg and Kim kinship data is presented.
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1 Multicriteria clustering problem

There are clustering problems which can not be appropriately solved with classical
clustering methods because they require optimization over more then one criterion.
In general, optimal solutions according to each particular criterion are not the same.
Because of this the problem arises of how to find the best solution so as to satisfy as
much as possible all of the considered criteria.

The usual clustering problem (®, P) can be formulated as an optimization problem:
determine the clustering C* for which

BN
P(C) = min P(C)

where ® is the set of feasible clusterings, C is a clustering and P : ® — R the (single)
criterion function.

In a multicriteria clustering problem (®, Py, Ps,...,P;) we have several criterion
functions P;,t = 1,...,k over the same set of feasible clusterings ® and our aim is to
determine the clustering C € ® in such a way that

P;(C) — min, b= Lo s

The problem arises of how to find a solution to the problem as good as is possible
according to each of the given criteria.
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The multicriteria clustering problem can be treated in different ways: by reduction
to a clustering problem with the single criterion obtained as a combination of the given
criteria; by clustering with constraints methods where a selected criterion is considered
as the clustering criterion and all others determine the constraints; or by direct methods.
In [5] two types of direct methods for solving multicriteria clustering problem were
proposed: the adapted relocation method, and the adapted agglomerative method.
Different elaborations of these two types of methods based on the notion of Pareto-
clustering were discussed and compared.

In this paper we elaborate further the agglomerative hierarchical approach based on
the criteria compositon.

2 Agglomerative hierarchical approach

We assume that we have k dissimilarity matrices D%, ¢t = 1,...,k, summarizing relevant
information on the relationships between the n units, obtained, for example, in k dif-
ferent situations. The problem is to find the best hierarchical solution in a way which
satisfies as much as possible all k dissimilarity matrices.

In [5] we proposed two types of adapted agglomerative hierarchical methods for
solving the multicriteria clustering problem.

The first approach is to combine the given dissimilarity matrices (at each step) into
a composed matrix on which the selection of the nearest pair of clusters is made.

The second approach is to perform the selection step by searching for the Pareto
nearest pair of clusters. The deficiency of this approach is that the proposed procedure
gives several (Pareto) hierarchical solutions. If a smaller set of solutions is desired,
additional decision rules or user decisions have to be built into the procedure. Also,
there is no single fusion level at each step — there is no simple graphical representation
of solution by a dendrogram.

In this paper we follow the first approach. We propose to use at the composition and
selection step one of decision rules (pessimistic, optimistic, Hurwicz, Laplace, Savage)
for making decisions under uncertainty [3, 6]. We obtain the following scheme of the
adapted agglomerative method:

Each unit is a cluster: C; ={X;} , X; € E ,1=1,2,...,n;
normalize each dissimilarity matrix D, t = 1,...,k;
repeat while there exist at least two clusters:
determine the nearest pair of clusters C, in Cy, d,, = d(C,,C,)
according to a given decision rule;
fuse clusters C, and C, into a new cluster C, = C, U Cy;
replace the clusters C, and C, by the cluster C;
for each dissimilarity matrix D!, ¢t =1,...,k:
determine the dissimilarities d* between the cluster C,
and other clusters according to a given fusion strategy.

The normalization step is not always necessary, especially when dissimilarities are
obtained according to the same variables and the same dissimilarity measure but for
example on different occasions.
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In the pair selection step of the algorithm the decision rules get the form:

Wald’s (pessimistic) rule:
dpq = H}}n max d:,j

Optimistic rule:

. 2 t
dpg = T d; ;
il

Hurwicz’s rule with pessimism index a, 0 < < 1:
dpq = min(emaxd: ; + (1 — ) mind} ;)
& '.,J. t 2 t ’

Laplace’s principle of insufficient reason:

1 k
dp’q = E mipz dit,]

Y ot=1

The Savage’s minmax regret decision rule
B t s gt Y
g = rr'%}nmta,x(d,-’j min di’j)

can not be directly applied in this context.
The obtained hierarchical solution can be graphically represented by the dendro-
gram. The dendrogram levels are the dissimilarities d, , from the pair selection step.

3 Application: The Rosenberg and Kim data

To illustrate the proposed approach for multicriteria clustering we used the well-known
data set on kinship terms [8]. The data are based upon subjective sortings of fifteen
kinship terms. Different groups of subjects sorted kinship terms under different sorting
instructions with which were obtained six data matrices [1, 62-63]. Two structuring
principles could be hypothesized: the first based on kinship and the second based on
gender. The data were analyzed by means of hierarchical clustering techniques (8], IND-
SCAL and INDCLUS models [1], multicriteria relocation methods [4], with algorithm
for fitting general graphs to proximity data [7] and other techniques.

The dendrograms obtained with the proposed agglomerative multicriteria clustering
method for Wald’s, optimistic, Laplace’s and Hurwicz’s (o = 0.25,0.50 and 0.75) rules
and Ward’s criterion function are presented in figures.

All the dendrograms determine the same clustering into three clusters: the first
cluster forms the nuclear family (mother, father, daughter, son, sister, brother), the
second cluster consists of collaterals (aunt, uncle, cousin, niece, nephew), and the third
cluster are the grandparents and grandchildren.

When analyzing each of the six data matrices separately with hierarchical and re-
location clustering methods four times the same (previuosly mentioned) clustering was
obtained [4].

The dendrograms obtained with four decision rules differ at lower clustering levels:
the optimistic and Laplace’s dendrograms are very similar — the térms are clustered
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on the kinship basis (mother-father, aunt-uncle, brother-sister, ...). Similar is also the
clustering produced by the Hurwicz’s decision rule with exception of mother and father
which are in different clusters. The most different solution was obtained with Wald’s
rule where the clusters on the lower levels are based on gendre with exception of one
cluster (sister, brother).

In summary, the obtained findings are congruent with previous analyses. It is evident
that the kinship level has stronger impact to the clustering of kinship terms than gender.

Additional experiments with this approach on different data sets are needed to study
the impact of particular decision rule to the corresponding clusterings.

All computations were carried out with the system of clustering programs CLUSE
(2] '
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