Intern. J. Computer Math., Vol. 34, pp. 171-176 i 1990 Gordon and Breach, Science Publishers, Inc.
Reprints available directly from the publisher Printed in the United Kingdom
Photocopying permitted by license only

AN ALGORITHM FOR TREE-REALIZABILITY OF
DISTANCE MATRICES*

VLADIMIR BATAGELJ and TOMAZ PISANSKIf
University of Ljubljana, Yugoslavia

J. M. S. SIMOES-PEREIRA
University of Coimbra, Portugal

(Received 4 September 1989, in final form 7 January 1990)

An algorithm for testing tree realizability of distance matrices is given. It is well-known that if a matrix
D has a realization by a tree then such a realization is optimal and unique up to homeomorphism. Our
algorithm produces a tree realization or a message that there is no such realization in time 0(n?) where
n is the number of points in a finite metric space with the distance matrix D. An O(n?) algorithm for
computing distance matrix for a given tree is also given.

KEY WORDS Distance matrix, tree-realizability, complexity
C.R. CATEGORIES: E.l, F.2.2, G.2.2.

Math. Subj. Class. (1985): 05 C

1. INTRODUCTION

The aim of this note is to present a fast algorithm to check whether a distance
matrix is tree-realizable and, if it is, to construct such a realization. Tree
realizations of distance matrices, when they exist, are optimal and unique [3, 4].

Tree realizable distance matrices were characterized in [5] and, for the integer
case, in [9]. From an algorithmic point of view, the time complexity of such a
characterization is quadratic in n where n is the order of the matrix.

Graph realizations of distance matrices and, in particular, tree realizations, have
spurred a lot of research; the topic has applications in many areas of pure and
applied mathematics as the sample of papers we quote [3, 4, 5, 6, 7, 8, 9] clearly
shows.

We recall that a distance matrix of order n, denoted D, is a nonnegative,
symmetric, square matrix whose entries d;; are such that, for i.j,ke{l,Z,...,n}‘
d;=0, d;;#0 for i#j, and d;;<d; +d,;. A graph G=(W, E) with lengths assigned to
its edges realizes D if there is a subset V of the vertex set W of G, with |V| =n and

*This paper was presented at the SIAM Conference on Discrete Mathematics in San Francisco, May
1988.
+Supported in part by the Research Council of Slovenia, Yugoslavia.

171

172 V. BATAGELJ ET AL.

such that, for i,je V' the length d(i,j) of the shortest path between i and j equals
di-j-'
An optimal graph realization is one with total length minimum among all
realizations. Vertices in V are called main, those in W\ V, auxiliary.

When we subtract from the nondiagonal entries in the ith row and in the ith
column of D the nonnegative, real number a, we obtain a new matrix, written

D{a), which is also a distance matrix when

. * 1
A< ap;(i)= min {id,i+d;,—d,)}
prefl, 2,...n}\li}

The operation which obtains D;:= D{a,,;,(i)) from D is called a compactification.
When, for some k(#i), a,;,(i)=d,, then, by the minimality of a;,(i), we obtain,
for every g #i,

dy+diy—dig2dy +dy—diy = 2dy,

hence d;,=d,, +d;, hence d;;=d; +d,,; in such case we say that i is pendant from
k in D. To avoid nondiagonal zero entries, we then remove duplicated parallel
lines in D, thereby decreasing by one the order of the matrix. This operation is
called reduction.

We know [6, 8] how to obtain an optimal realization G of D from an optimal
realization G’ of D;:

If D, is a compactification of D, the vertex i of G' becomes auxiliary, is renamed
and linked by a new (pendant) edge of length a,,;,(i) to a new main vertex i;

If D; is a reduction of D, the main vertex k of G is linked by a new (pendant)
edge of length a,;,(i) to a new main vertex i. It follows immediately from the
definitions that D is tree-realizable if and only if it yields the trivial matrix [0] of
order 1 by successive compactifications and reductions.

2. THE ALGORITHM

2.1 Data Structures

D =Initially an n by n distance matrix for which we have to test tree-realizability.
At the end it is expanded to an m by m distance matrix of a tree with (m—n)
auxiliary vertices if the test turns out positive.

Tr=An m array that we build gradually and in which we store the tree
structure. For instance, vertex i is adjacent to vertex Tr[i].

2.2 Comments

The basic step of the algorithm takes a vertex k which is not yet a part of the tree
Tr and attaches the vertex to the partially built tree Tr. There are six possible
outcomes of this step.

a) D turns out to be nontree-realizable.

e)

f)

TREE REALIZATION 173

k becomes a leaf in the tree and is attached to an existing vertex a of the
tree.

Same as case (b) but the distance D[k,a] turns out to be 0. We do not add
vertex k.

k becomes a leaf in the tree and is attached to an edge, say from 4 to b. To
this end the edge is subdivided and k is in fact attached to the newly
constructed auxiliary vertex c. In this case D is expanded for another row
and column that correspond to the vertex c.

Same as case (d) but it turns out that ¢ already exists. It belongs to the part
of original D that has not been examined yet.

Same as (d) but it turns out that D[k,c]=0. There is no need to introduce
an auxiliary vertex.

Essentially we are performing inverse operations to compactifications and
reductions.

2.3 Outline of the Algorithm

1.

2.1.
2.1:1;

2:122,

2.13.
232

2:2.L
222

22.2.1.

2222

223,

224
225
2.3

O(1) Initialize. The tree Tr contains a single vertex 1. Let Tr[1]:=1. Set
up a stack link of vertices in the tree. Let m:=n. The vertices will
only be added to (and never removed from) the stack. The last entry
in the stack is the root.

O(n) For k=2,3,...,n repeat

O(m) For each vertex a from the stack link repeat

o(1) Let b=Tr[a]. Let x:=(D[a,b]+D[b,k]—D[a,k])/2. The value

x tells us where on the edge from « to b (at the distance x from
b) we have to attach our vertex k.
o(l) If x<0 or x>D[a,b] then
D is not a distance matrix. Stop.

o(1) If x#0 Exit

O(1) IfO0<x<D[ab] then

0(1) Let p:=m+1

O(m) For each vertex c:=1,...,m repeat

o) Let D[p,c]:=(D[a,c]+ D[c,b]—D[a,b]+
|D[a, k1+ D[b,c]—D[k,b]—D[c,a]|/2

o(1) If D[p,c]=0 then Let p:=¢; Exit

o(1) If p=m+1 or p=k then

we have to introduce a new vertex p that lies on the
edge from a to b. Modify the tree T'r accordingly.
o(1) If p=m+1 then Let m:=m+1
o(1) Let a:=p.
O(1) If k+#a then attach k to the vertex a. Modify the tree Tr.
Check whether augmented D is indced the distance matrix for the
tree Tr.

Note: If x=0 in the Step 2.1.3 it means that k has to be attached to the tree at or

174 V. BATAGELJ ET AL.

above vertex b. The order in which the For loop is performed in Step 2.1. is
important. Namely for each vertex b(# root) of a tree the edge from b to Tr[b]
has to be examined only after all edges from a to b= Tr[a] are examined.

3. THE TIME COMPLEXITY OF THE ALGORITHM

Let n be the size of original distance matrix and let m be the size of final distance
matrix. This means that there are n main vertices and m—n auxiliary vertices. It is
easy to see that the time complexity of the algorithm is O(n?). We prove this as
follows. We may assume that the matrix is tree realizable. If not the algorithm
would terminate sooner and the worst case is not attained.

LemMMa The number of auxiliary vertices is at most n—2.

Proof Each auxiliary vertex is of degree at least 3. In a tree we have:
#edges=m—1. And we also have

2 #edges=) degrees=3(m—n)+n
Hence 2(m—1) =z 3(m—n)+n=3m—2n which is equivalent to 2n—2=m. Q.E.D.

This means that O(n*)=0(m*) for each k, and in particular O(m?*)=0(n?). When
we wrote the algorithm we already indicated time complexity for each partial step.
Now we only have to combine them accordingly in order to determine the overall
time complexity Time=T(Stepl)+ T(Step2)+ T(Step3).

T(Stepl)=0(1).
T(Step2)=(n— 1)(T(Step2.1) + T(Step2.2) + T(Step2.3))
T(Step2.1) 1 O(m)(T(Step2.1.1) + T(Step2.1.2.) + T(Step2.1.3))
T(Step2.1.1)=0(1)
T(Step2.1.2.)=0(1)
T(Step2.1.3)=0(1)
= T(Step2.1)=0(m)
T(Step2.2) =0(1) +
T(Step2.2.1)+ T(Step2.2.2) + T(Step2.2.3) + T(Step2.2.4) + T(Step2.2.5)
T(Step2.2.1)=0(1)
T(Step2.2.2)=0(m)
T(Step2.2.3)=0(1)
T(Step2.2.4)=0(1)
T(Step2.2.5)=0(1)
= T(Step2.2)=0(m)
T(Step2.3)=0(1)
=T(Step2) = 0(n)(0(m) + O(m) + 0(1)) = O(nm) = O(m*) = O(n?)
T(Step3)=0(n?)

Therefore Time=0(1)+0(n?)+0(n*)=0(n?). This shows that our algorithm is
indeed quadratic.

TREE REALIZATION 175

We have made experimental tests of our algorithm. First we randomly generated
a tree, with a given number of vertices, and its matrix. Then we calculated its
distance matrix. Afterwards we selected a principal submatrix that we used as
input to our algorithm. Clearly each matrix was tree-realizable. The experimental
results also show the quadratic behaviour of the algorithm.

For testing purposes we developed a special algorithm which computes the
distance matrix of a given tree. This algorithm is also quadratic and therefore
more efficient than standard algorithms for general graphs.

4. AN ALGORITHM FOR COMPUTING DISTANCE MATRIX FOR A
GIVEN TREE

Given a tree Tr on n vertices with distances on edges already stored in matrix D
we compute distance matrix D in time O(n?). The distance matrix D is symmetric
(D[i,j1= Dy,).

It 1s assumed that i=Tr[i] if and only if i=root. We are using an auxiliary level
array L[i] that represents the number of vertices on the path towards the root of
the tree (L[root]=1). Initially all L[i] are undefined. We need a recursive function
Lu(i) with side effect for calculating L[i]; and another recursive function dist (i,)
(=dist (j,i)) for calculating D[i,j]:

L[i] L[i] is defined
Lv(i)=L[i]= 1 i=root
1+ Lo(Tr[i]) otherwise

D[i.j] D[i,j] is defined
dist (i,j)=D[i,j1= D[, Tr[i]]+dist(Tr[i],j) Lv(i)> Lv(j)
dist (i, Tr [{])+ D[Tr[i],j] otherwise

The algorithm is now simple

Fori=1,2,...,n repeat
For j=i+1,2,...,n repeat D[i,j]:=dist(i,j)

Note: Just before submitting this manuscript for publication we learned that J. C.
Culberson and P. Rudnicki [2] obtained quite similar results. They also attribute
the first O(n?) algorithm for tree-realizability to F. T. Boesch [1].

References

[1] F.T. Boesch, Properties of the distance matrix of a tree. Q. Appl. Math. 26 {1968), 607-609.

[2] J. C. Culberson and P. Rudnicki, A fast algorithm for constructing trees from distance matrices.
Information Processing Letters 30 (1989), 215-220.

[3] S. L. Hakimi and S. S. Yau, Distance matrix of a graph and its realizability, Quart. Appl. Math. 22
(1964-65), 305-317.

[4] W. Imrich, J. M. S. Simoes-Pereira and C. M. Zamfirescu, On optimal embeddings of metrics in
graphs, J. Combin. Theory Ser. B 36 (1984), 1-15.

176 V. BATAGELJI ET AL.

[5] J. M. S. Simoes-Pereira, A. note on the tree realizability of a distance matrix, J. Combin. Theory 6
(1969), 303-310.

[6] J. M. S. Simdes-Pereira, A note on optimal and suboptimal digraph realizations of quasidistance
matrices, STAM J. Algebraic and Discrete Methods 5 (1984), 117-132.

[7] J. M. S. Simdes-Pereira, A note on distance matrices with unicyclic graph realizations, Discrete
Math. 65 (1987), 277-287.

[8] J. M. S. Simdes-Pereira and C. M. Zamfirescu, Submatrices of nontree-realizable distance matrices,
Linear Algebra Appl. 44 (1982), 1-17.

[9]1 K. A. Zaretzkii, Constructing a tree on the basis of a set of distances between the hanging vertices,
Uspekhi Mat. Nauk. 20 (1965), 90-92, in Russian.

