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Abstract: This paper presents two new developments for partitioning networks.
One is the symmetric-acyclic decompostition of a network into clusters of vertices
where the vertices in a cluster are linked only by symmetric ties only (with null ties
for some pairs of vertices permitted). The induced structure of clusters and ties
between clusters is an acyclic graph. A corresponding ideal blockmodel is defined
and, given this definition, a generalized blockmodeling method for establishing
such decompositions of networks is the second approach introduced here. Both are
founded in the Davis and Leinhardt (1972) formulation of a ranked clusters model
as a theoretical expectation concerning the structure of human groups and directed
affect ties. The decomposition also creates a delineation of the internal structure of
identified components but is sensitive to departures from the ideal model. The gen-
eralized blockmodeling approach is complementary to the decomposition because
it is robust in the presence of such departures and, moreover, identifies them.
While initially formulated in a small groups context, the ranked clusters model can
be applied to a variety of network phenomena. We illustrate the decomposition
and generalized blockmodeling methods with the marriage network of noble fami-
lies in Ragusa (Dubrovnik) for the 18th Century and early 19th Century.

Keywords: Social networks; Partitioning; Blockmodels.

1. Introduction

Our concern here is the partitioning of social networks into clusters
(called positions) and the delineation of the structure of the whole network in
terms of the identified positions! and the relations between them. The refer-
ence point for these partitions is an ‘ideal’ structure where the ties between
members of a position are symmetric (with null ties permitted2 ) and the net-
work of the positions and the ties between positions is an acylic graph.

The ideal model is grounded in substance and stems from the work of
Davis and Leinhardt (1972) who distilled some essential ideas from Homans
(1950, pp 108-130; 140-147) and formulated a ranked clusters model, one that
results from the operation of two sets of social forces. This resulting model
— for small groups of social actors and an affect tie — has two distinct struc-
tural features. One is the differentiation of the small group into cliques (in the
sense of a maximal complete subgraph) while the other is the elaboration of
‘ranks’ that can be described in terms of levels. The social processes generat-
ing these two structural features reinforce each other with the result that the
cliques are distributed across the levels.

1. We use the term ‘location’ to describe the pattern of ties for an actor (vertex) and the term
‘position’ for a cluster of vertices that has been identified in some fashion.

2. In fact, they are a special case of a symmetric tie.
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2. Acyclic Structures

The initial formulation of the ranked clusters model was for a directed
affect tie such as ‘likes’. We describe the tie between pairs of actors who like
each other as symmetric or mutual. When one actor likes another actor and
the sentiment is not reciprocated, the tie is asymmetric. One part of the ideal
structure is the formation of cliques with the mutual ties and the second is the
ranking generated by the asymmetric ties. The presumption is that the asym-
metric ties are directed in a systematic fashion. In the small group context,
the more popular actors are ranked higher and the asymmetric ties are
directed ‘upwards’. When they exist, the asymmetric liking ties go from
lower ranked actors to higher ranked actors. Later, we define the term ‘level’
precisely. For our purposes now, the intuitive idea of there being levels is
enough. The case where a clique exists as the sole occupant of a level is
straightforward. When multiple cliques do so, there are no ties between
members of different cliques on the same level. We emphasise that this is a
specification of an ideal structure.

This partition of the ties into symmetric and asymmetric parts is central
to the ranked clusters model. For cliques at distinct levels, the hypothesized
structure has asymmetric ties directed ‘up’ from lower ranked cliques to
higher ranked cliques. In this ideal structure, no asymmetric ties are directed
‘down’ from members of higher ranked cliques to actors in lower level
cliques. Nor are there mutual ties between units at different levels. In general,
the direction of the relation is arbitrary. If instead of ‘likes’, we used ‘is liked
by’, the ties would be directed down and the forbidden direction for the ties
would be up. Later, we argue that the ranked clusters model is not restricted
to small groups. If the relation is ‘has authority over’ the permitted direction
is down and the forbidden direction for a ranked clusters model is up. It is the
reverse for ‘is responsible to’. All that matters is that there is a direction (up
or down). The specific direction as arbitrary. The acyclic requirement is that
the asymmetric ties go in one direction across ranks.

The ‘ideal’ model used by Davis and Leinhardt (1972) as an illustration
of their ranked clusters model is shown in Figure 1 with five positions (as
subgroups) and three levels. The highest ranking position is A. Some actors
from all other positions direct ties towards actors in A. There are two posi-
tions, B and C, at the second level. Some actors in these positions send ties to
actors in A and receive ties from actors in D and E. There are no ties between
actors in B and C. There are two positions, D and F, in the third (bottom)
level whose members direct ties up to actors in all of the other positions.
There are no ties between D and E.

In our generalization of the ranked clusters model, we do not require
subgroups to be maximal complete subgraphs. There are two reasons for this.
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Figure 1. A Three Level Acyclic Model.

Table 1. A Relation R
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Figure 2. Graph of the Relation in Table 1.

One is the widely accepted argument that cliques are too stringent because
they require the presence of all ties for a cohesive subgroup — hence, for
example, the efforts to specify n-cliques (Luce 1950), n-clans (Mokken 1979)
and k-plexes (Seidman and Foster 1978). A second reason for liberalizing the
clique idea is found in the idea that these structures are generated by
processes and that the observed structures are not likely to be in an equili-
brium state. The process generating cohesive subgroups may be incomplete
and not all mutual ties have been generated by the time the structure is
observed. We note that, in this generalization of the ranked cluster structure, a
pair of cliques on the same level can be connected by a symmetric tie.

Table 1 and Figure 2 contain a constructed hypothetical example that
we use to illustrate the symmetric-acyclic decomposition described in the
next section and the generalized blockmodeling partitioning method. In
Table 1, the period ‘-’ represents a 0. The italicized 1’s which are circled (i.e.,
j —k, 0 > n, and r — p) are inconsistent with symmetry inside clusters.
Bold faced 1’s which are shown in squares (i.e. a — g, and i — g) represent
ties that are inconsistent with the assumed acyclic structure. In Figure 2, the
thick ties represent symmetric ties and the thin lines represent asymmetric
ties for the symmetric-acyclic decomposition and the generalized blockmo-
deling method.
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3. Establishing Symmetric-Acyclic Decompositions of Networks

We present a new tool, called the symmetric-acyclic decomposition
method, for verifying the presence (or not) of an acyclic structure characteris-
tic of the ranked clusters model. The networks considered here have directed
ties. The ‘pure’ ranked clusters model is an acyclic directed graph. Any
departures from such a structure are not allowed.

Let U= {x,,x2,...,x,] be a finite set of actors or units. The units are
related by a binary relation

RcUxU
which determines a network
Net = (U,R).

The network shown in Figure 2 is a graph with units as vertices.
A clustering C = {C{,C,, ... ,C,} is a partition of U where C; c U are
clusters. C partitions the relation R into blocks

R(C,,Cj) =RnN Ci X Cj .

Each such block consists of units belonging to clusters C; and C; and all the
arcs leading from cluster C, to cluster C;. If i = j, a block R(C;,C;) is called a
diagonal block.

We say that a clustering C over the relation R is a symmetric-acyclic
clustering iff (a) all subgraphs induced by clusters from C contain only
bidirectional arcs (edges); and (b) each closed walk in (U,R) is entirely con-
tained in a single cluster of C.

3.1 Ideal Structures

The vertices are partitioned into positions based on the pattern of ties
linking them. For the ideal ranked clusters structure, there is also a partition
of the ties into symmetric and asymmetric ties. The symmetric ties are found
only inside the diagonal blocks and the asymmetric ties are located in blocks
above or below the diagonal (but not both) depending on the intrinsic direc-
tion of the relation studied. We express this as decomposing a relation R into
two relations, S and Q, as follows.?

3. We use ! to denote the transpose, consistent with a widely used convention. Later we use
the symbol “ to label a factor set U” (which is the set of clusters generated in the decomposi-
tion).
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A relation R — U x U has a symmetric-acyclic decomposition (S,Q) iff
there exist relations S,Q < U x U such that (1) (S,Q) is a partition of R,
SuQ=Rand SN Q =, (2)Sis symmetric, § = ST, and (3) Q is acyclic in
(U,R), ) Q * R* = &, where R is the transitive and reflexive closure of
relation R, and the operation * denotes the product of (any two) relations R
and R,: Ry *R, = {(x,y):3z:(xR1zAzR,y)}. For Theorem 1, we use the
notation R \ S to denote the elements of the set R that do not belong to S.

Theorem 1. If a relation R < U x U has a symmetric-acyclic decomposition
(5,0) then

S=RNRT and Q=R\S.

The reflexive and transitive closure S * of relation S is an equivalence rela-
tion, equal to the strong connectivity relation in (U,R). Let U” denote the fac-
tor set U/S”. U’ is a symmetric-acyclic clustering. The relation T defined on
U’ by

XCY=3dxe X, Iye Y:xQy

is acyclic and irreflexive.

If the relation shown in Table 1 had O’s instead of the italicized 1’s and
the bold faced 1’s, it would have a symmetric-acyclic decomposition. As
such, it is an ideal relation and we confine attention to it in this section. The
ideal ranked clusters structure for this relation is drawn on the top of Figure 3 -
with six positions: P = {a,b,c}, P, ={d,e}, P3={jkl}, P4y = {m,n,0},
Ps={fghi}, and Ps = {p.q.1.5}.

We can assign levels (or ranks) to positions from U” by defining a leve!
function: h:U > 1, ... L, satisfying the conditions (a) & is surjective, and
(b) for each pair of positions, P;,P; € U", P;C P; = h(P;) < h(P)).

Each level function determines a symmetric-acyclic clustering
C = {C;} where

Ci = U P
PeU"h(P)=i
and vice versa
PP e Ce C= h(P)=h(P)).

In other words, clusters in a symmetric-acyclic clustering are exactly unions
of the positions at the same level.

The cover relation &, analogous to the Hasse relation of an order, can
be defined also for an acyclic relation T by
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Figure 3. A Four Level Acyclic Graph for Relation in Table | and its Hasse Graph.

E=C\[ *r

where L= denotes the transitive closure of relation C.

We obtain £ from C by deleting each arc (x,y) with the property that
there exists a path of length at least 2 from x to y. Using the Hasse graph
H = (U", C) we can describe the set X of all acyclic clusterings with sym-
metric clusters over R: (a) the minimum number of clusters is equal to 1 + 4,
where d is the length of the longest path in H (and implies min L, = 1 + d);
(b) the maximum number of clusters is equal to card U (and implies
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max L;, = card (U"); (c) card £ = 1 iff H is a path; and (d) each k-clustering
(partition into k clusters) is determined by a k-set (a set with k elements) of
“‘compatible independent’” vertices/positions of H.

Two vertices u,v € U~ are independent iff they are not connected by a
path in H. A pair of sets X,Y c U” is compatible iff

—Ixxe X, Fyyre Yi(xy Ly Ay Cxa).

All pairs of sets in a k-set have to be compatible. The clusters are unions of
the sets corresponding to vertices from the sets of a k-set. We note that, as a
special case, an asymmetric tie down a ranked clusters model leads to an
incompatibility.

For the idealized relation shown in Table 1, the graph of the relation T
is presented on the top panel of Figure 3. To obtain the Hasse graph H (see
the bottom of Figure 3) two arcs (P4,P;) (given the path P4P,P,) and
(Pg,P2) (given the path PgP4P;) have to be deleted. The longest path in H
has length 3 and therefore the number of levels is at least 4. There are further
symmetric-acyclic clusterings that can be obtained from P, through P¢ pro-
viding compatibility is preserved. There are 10 such clusterings and we
denote them with Cj- where i is the number of clusters and j is an index run-
ning over the clusterings with a given number of clusters. Thus C1 is the first
such clustering with four clusters. There are four symmetric-asymmetric clus-
ters with four clusters, five with 5 clusters and one partition with 6 clusters.
From H we see that the following symmetric-acyclic clusterings (where only
compatible clusters can be grouped together) exist:

C}{={P,,P,UPs,P3UP4Pg)
C4={P,,P,,P3UP,UPs5Pg}
C4=(P,P, UPs,Py,P3U P}
Cj= {Pl,Pz,P4UP5,P3UP6}
Ci = {P,,P, UPs5,P3,P4,P¢}

C3 = {P,P2,P3,P4 U Ps5,P¢}

C3 = {P.P2,P3 UPs5,Py,Pg}

C; = {P\,P2,P3UPgP4,Ps}

C3 = (P,P3,P3 U PyPs5.Ps}

C6 = {Pl,Pz,P3,P4,P5,P6} =U/.

We can introduce, in X, an operation
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Figure 4. A Semilattice Constructed from Figure 3.

C] Hsz{ClmC:)_ZC] € C],CzE Cz}\{@}
For example
cinci=cj.

It is easy to verify that (£,M) is a semilattice (associative, commutative,
idempotent, with U” as an absorption element).
The semilattice of clusterings for our example is presented in Figure 4.

3.2 Relations Without a Symmetric-Acyclic Decomposition

There are several possible approaches to networks that do not have an
exact ranked clusters structure (and so are not ideal).

The symmetric-acyclic decomposition (S,Q) described above can be
improved by setting

S=RART and Q=R\S,

where S replaces S in the definition of Q. In the ideal case this still produces
the same asymmetric-acyclic decomposition; but in the nonideal case it
removes all asymmetric inconsistencies from diagonal blocks.
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3.2.1 Deleting Arcs

If there is no symmetric-acyclic decomposition, a useful procedure is
arc deletion. The set

A=SN(R\S)

gives us asymmetric arcs inside the otherwise symmetric classes of U. For
Table 1, A identifies exactly the three asymmetric ties, the italicized 0’s,
within the diagonal blocks: A = {(j,k),(o,n),(r,p)}. These ties need to be
deleted or symmetrized. If the only violations of the symmetric-acyclic
assumption concerned symmetry, the analysis would be complete. In the
example, Q is not acyclic and we have to delete some arcs to make it acyclic.
Here, the bold faced 1’s above the diagonal would be located and deleted
leaving an exact model (with the inconsistencies noted). In general, however,
the identification of the smallest number of arcs to be deleted to obtain an
acyclic model is not an easy problem.

3.2.2 Iteration of the Symmetric-Acyclic Decomposition

Also, we can iterate the above decomposition procedure until we obtain
a graph without edges.
Let Uy := U, R( := R and set i := 0. Then repeat the following steps:

(1)  Determine the symmetric part of R; (the edges)
S; = (Ry "R\ Iy

where I'y, = {(x,x):x € U;} is the identity relation on U;.

(2) Ifno edge exists, S; = &, stop iterating,

(3)  Shrink the symmetric components, producing a new reduced
graph (U;,|,R;,) determined by:

Uiy :=U/S]
Riy = {(X,Y):Ix e X3y € Y:xR;y}

(4) Increase the counter of steps i ;=i + 1.

The obtained clusterings are nested (and form a hierarchy) and all clus-
ters are strongly connected. If the final clustering is not acyclic we add an
additional step in which we factorize the graph according to strong connec-
tivity. The final graph is the condensation of the original network (Harary,
Norman, and Cartwright 1965, pp 57-65).
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3.3 A Generalized Blockmodeling Approach

Blockmodeling methods were established in social network analysis to
partition units in a social network in terms of the structural information con-
tained in their network ties. Hummon and Carley (1993) showed that block-
modeling has been a major focus of activity for network analysts. Methods
were invented, for example, CONCOR (Breiger, Boorman, and Arabie 1975)
or adapted from extant clustering methods, for example STRUCTURE (Burt
1976). This initial work focused on structural equivalence (Lorrain and White
1971) where units are structurally equivalent if they are connected to the rest
of the network in identical ways. Subsequent work, for example Sailer
(1978/1979) and White and Reitz (1983), generalized this concept to regular
equivalence where two units are regularly equivalent if they are equivalently
connected to equivalent others. They have the same types of neighbors.
Further work dealt with automorphic equivalence (see, for example, Borgatti
and Everett 1992; Pattison 1988).

The partition of the units of a network into clusters generates a block-
model where the (new) units are these clusters, called positions* The set of
ties between two positions forms a block. Those ties in a block (i.e. between
all units in the two positions) are used to construct — and thereby summarize
— the ties between positions. In our discussion of the symmetric-acyclic
decomposition, we described an ideal block pattern but said nothing of how
the blocks would be represented in a blockmodel. The image of a blockmodel
is a matrix or pictorial representation of the ties between positions. In
essence, Figure 1 is such an image.

An appropriate generalization of the equivalence idea is one where
each block, of a particular partition, is free to conform to a different pattern.
This led Batagelj (1997) and Doreian, Batagelj, and Ferligoj (1994) to the
definition of several types of connections inside and between the clusters as
different types of blocks. Some of them are presented in Table 2. From the
definition of structural equivalence it follows that there are two basic blocks:
null and complete (Batagelj, Ferligoj, and Doreian 1992). Batagelj, Doreian,
and Ferligoj (1992) proved that regular equivalence produces two types of
blocks: nuil and regular (see Table 2).

4. We have been using blockmodeling terms in discussing the symmetric-acyclic decomposi-
tion. Position is used here in the same sense as used in Section 2. Borgatti and Everett (1992)
provide a lucid discussion of this concept.
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Table 2. Characterizations of Types of Blocks

null nul | all 0 (except may be diagonal)
complete com | all 1 {except may be diagonal)
row-regular rre | each row is 1-covered
col-regular cre | each column is 1 -covered

row-dominant | rdo | 3 all 1 row (except may be diagonal)
col-dominant | cdo | 3 all 1 column (except may be diagonal)
regular reg | 1-covered rows and 1-covered columns
non-null one | 3 at least one 1

Another block type, introduced here, is necessary for the symmetric-
acyclic decomposition of networks. This is the symmetric block. A block is
symmetric if

V (x,y)e C;xC;:(xRy < yRx) .

Note that for nondiagonal blocks this condition involves a pair of blocks
R(C;,C)) and R(C;,C)).

3.3.1 Formalization of Blockmodeling

The point of departure is, as before, a network with a set of units, U,
and a relation R c U x U. Let Z be a set of positions or images of clusters of
units. Let w:U — Z denote a mapping which maps each unit to its position.
The cluster of units C(¢) with the same position 7 € Z is

coy=p')={xe U:px) =1}.
Therefore
Cw={C@t):te Z}

is a partition (clustering) of the set of units U.

A (generalized) blockmodel is an ordered quadruple M = (Z,K,T,m)
where: (a) Z is a set of positions; (b) K cZxZ is a set of connections
between positions; (¢c) T is a set of predicates used to describe the types of
connections between clusters in a network; we assume that nul € T; and (d)
A mapping 7t: K — T\ {nul} assigns predicates to connections.

A (surjective) mapping W:U — Z determines a blockmodel, M, of a
network N iff it satisfies the conditions:

Y (r,w) € K :m(z,w)(C(1),C(w))

and
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Y (t,w)e ZXZ\K :nul (C(1),C(w)) .

Let = be an equivalence relation over U. It partitions the set of units U
into clusters

[x]={ye Uix=y}.
We say that = is compatible with T or is a T-equivalence over a network N iff
Vxye U dT e T:T(x].yD

It is easy to verify that the notion of compatibility for T = {nul,reg } reduces
to the usual definition of regular equivalence. Similarly, compatibility for
T = {nul,com } reduces to structural equivalence.

For a compatible equivalence = the mapping W : x — [x] determines a
blockmodel with Z = U/=.

3.3.2 Optimization

The problem of establishing a partition of units in a network in terms of
a selected type of equivalence is a special case of a clustering problem that
can be formulated as an optimization problem: determine the clustering c’
for which '

P(CH = 323 P(C)

where C is a clustering of a given set of units U, @ is the set of all feasible
clusterings and P : ® —R{ the criterion function.

Criterion function P(C) has to be sensitive to the selected type of
equivalence:

P(C) = 0 & C determines an equivalence of the selected type.
3.3.3 Criterion Functions

One of the possible ways of constructing a criterion function that
directly reflects the selected type of equivalence is to measure the fit of a
clustering to an ideal one with perfect relations within each cluster and
between clusters according to the selected type of equivalence.

Given a clustering C = {C{,C,, ...,C;}, let B(C,,C,) denote the set
of all ideal blocks corresponding to block R(C,,C,). Then the global incon-
sistency of clustering C can be expressed as a criterion function

PIC)= 3, min  d(R(C,,C,),B)
¢, CecBEBCLC)

where the term d(R(C,,C,),B) measures the difference (inconsistency)
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between the block R(C,,C,) and the ideal block B. The function d should be
compatible with the selected type of equivalence:

Bi & B(Cu,Cv) A B] € B(Cu,Cv) = d(B,,BJ) >0

Given a set of types of connections T and a block R(C,,C,), C,,C, c U
can determine the strongest (according to the ordering of the set T) type T
which is satisfied the most by R(C,,C,). In this case we set

W(H(Cu),u(cv)) =T

The obtained optimization problem can be solved by local optimiza-
tion, using, for example a relocation algorithm (Batagelj, Doreian, and Ferli-
goj 1992).

3.3.4 Pre-Specified Blockmodels

The pre-specified blockmodeling starts with a blockmodel specified, in
terms of substance, prior to an analysis. Batagelj, Ferligoj, and Doreian
(1998) presented methods where a set of observed relations are fitted to a
pre-specified blockmodel. Given a network, a set of ideal blocks is selected,
a reduced model is formulated, and partitions are established by minimizing
the criterion function.

In the example of the next section, the pre-specified blockmodel is acy-
clic with symmetric diagonal blocks. The permitted blocks for such a model
are null (denoted nul), symmetric (sym), and ‘contains at least one 1’ (one).
For a clustering into 4 positions, a symmetric-acyclic type of models can be
specified as:

sym nul nul nul
nul,one sym nul nul
nul,one nul,one sym nul
nul,one nul,one nul,one sym

In concrete analyses, sym on the diagonal, and its subtypes nul and com, usu-
ally are included.

In our discussion thus far, all inconsistencies are alike in the sense that
they contribute equally to the total number of inconsistencies. Given the
ranked clusters model, it is possible to argue that some inconsistencies are
more consequential than others. Following this logic, asymmetric ties down
from a higher to a lower level are the most serious. The computed criterion
function can include having a higher penalty for these ties (e.g., 100). Asym-
metric ties within clusters seem the next most important type of error. The
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modification to the criterion function can have a milder penalty for these ties
(e.g., 10). Finally, inconsistencies in the blocks below the main diagonal can
be specified as minor (e.g., 1)° Using these values, the penalty matrix is:

10 | 100 | 100 | 100
1 10 100 | 100
1 1 10 100
1 1 1 10

4. Applications

We consider two examples. One is the constructed network in Figure 2
and the other features the Ragusan noble families (KrivoSic 1990).

4.1 The Constructed Example

If the inconsistencies with the ranked clusters model in the relation in
Table 1 are not present, all methods delineate the true structure correctly.
Also, if only the violations of the symmetry condition within positions are
present, all methods are successful.

With all of the inconsistencies shown in Table 1 in the data, the block-
modeling optimization approach locates the clusters correctly and reports all
of the 5 inconsistencies using the model specification and penalties described
in the previous section. However, the symmetric-asymmetric decomposition
does not fare as well. The reasons for this are evident in Figure 2 representing
the network from Table 1. As noted above, the figure was constructed in
terms of clusters with ties that were inconsistent with an ideal ranked clusters
model. In the decomposition, the algorithm establishes in the first step
{j.k,l}, {d,e} and {m,n,0} correctly as subsets internally connected through
mutual ties and not connected in that way to any other units. The remaining
three clusters are identified also as being linked internally through mutual
ties. The presence of the mutual tie between a and g connects the cluster
{a,b,c} to cluster {f,g,h,i)} and the mutual tie between i and g connects the
second of these clusters to {p,q,r,s}. Therefore, all three clusters are con-
nected via symmetric ties. When the symmetric components are shrunk, there

5. If only nul and one blocks are specified below the diagonal, there are no inconsistencies.
Future work will explore the specification more stringent block types below the diagonal.
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are only four units for the next iteration. As three of them have symmetric
ties the algorithm ends after second iteration with only two levels. The first
consists of cluster {j,k,/} and the second one of all other units.

One methodological interpretation is that the optimization approach is
more robust in the presence of violations of the acyclic condition while the
symmetric-acyclic decomposition is not. The latter procedure assumes per-
fect acyclic data. In contrast, the blockmodeling optimization concedes the
presence of some inconsistencies and reports both partitions and inconsisten-
cies rather than being overly affected by the latter.

4.2 Ragusan Families Marriage Network

Krivo$ié (1990) presented some interesting data for the population of
Ragusa (Dubrovnik), a republic for most of its history. He also constructed
two matrices describing the marriage networks of the Ragusan noble families
in the 16th century and in the 18th century (and the beginning of 19th cen-
tury). The matrix of the marriage relation for the second period is presented
in Table 3 where the rows represent the families of the groom and the
columns represent the houses of the bride. While these data are similar to the
well known Padgett marriage network for the elite Florentine families in the
15th century (Padgett and Ansell 1993), they are directed and valued. Men
marrying women and women marrying men are distinguished. The relation in
Table 3 is ‘men marrying women’ and has been organized in conformity with
the ranked clusters model fitted to these data. While the source data were
valued (with counts of marriages between families), they were dichomoized
to record only the presence or absence of marriage ties between families.

Ragusa was settled in 7th century, as reported by Constantine Porphy-
rogenite, by fugitives from Epidaurum after its destruction. Ragusa was for a
time under Byzantine protection, becoming a free commune as early as 12th
century. Ragusa quickly grew into a free city-state. They prospered unhin-
dered thanks primarily to their clever diplomacy and great skill in balancing
the great powers, formally recognizing and paying tribute alternately to one
then another. Napoleon, having destroyed the Venetian Republic in 1797, put
an end to the Republic of Ragusa in 1806, which subsequently came under
Austrian control until the fall of the Austro-Hungarian monarchy in 1918.

The Ragusan nobility evolved in the 12th century through the 14th cen-
tury and was finally established by statute in 1332. After 1332, no new fam-
ily was accepted until the large earthquake in 1667.

In Ragusa all political power was in the hands of male nobles older
than 18 years. They were members of the Great Council (Consilium majus)
which had the legislative function. Every year, 11 members of the Small
Council (Consilium minus) were elected. Together with a duke — who was
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Table 3. Permuted Ragusan Families Marriage Network, 18th and 19th
Century

142001 3 7 1012192223 2 8 9 6 13 1116 21|4 5 1517 18
Natali I
Slatarich 20 .
Basilio 1 1
Bonda 3 . 2
Cerva 7 1 11 1
Gondola 10 1 . .
Gradi 12 . - 11 3
Saraca 19 1 -
Tudisi 22 . 1
Zamagna 23 1 2 . 1
Bona 2 1 . 2 2 -1
Georgi 81| - 2 1 . 11 . - 4
Ghetaldi 911 -1 -1 1 1 -
Caboga 6|1 1 - -1 . - -1 1
Menze 13 | - . 1 11 -
Goze 11 11 2 1 - 2 . 2 - 2
Poza 16 . . . - 11
Sorgo 21 1 1 1 2 1 -1
Bosdari 4 11 .
Bucchia 5 S 1
Pauli 15 . 1 B
Ragnina 17 1 -1 1 1
Resti 18 . 1 1 -

elected for a period of one month — it had both executive and representative
functions. The main power was in the hands of the Senat (Consilium roga-
torum) which had 45 members elected for one year.
This organization prevented any single family, unlike the Medici in
Florence, from prevailing. Nevertheless the historians agree that the Sorgo
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family was always among the most influential families.% For example: (a) in
the 17th century, 50% of dukes and senators were from the following five
families — Bona, Gondola, Goze, Menze, and Sorgo; (b) in the 18th century,
56% of senators were from five families — Sorgo, Goze, Zamagna, Caboga,
and Georgi; and (c) in the last 8 years of Republic, 50% of dukes were from
five families: Sorgo, Goze, Gradis, Bona, and Ragnina.

A major problem facing the Ragusan noble families was that there were
decreases of their numbers and no noble families were in the neighboring
areas (which were under Turkish control). As a result, they became more and
more closely related (1566 — ‘‘quasi tutti siamo congionti in terzo et in
quarto grado di consanguinita et affinita’’) — the marriages between rela-
tives of only 3rd and 4th removed were frequent.

4.2.1 Earlier Analyses

Batagelj (1996a) found that the most influential families, according to
the indices of centrality, in the second period (18th and 19th century) were
Sorgo, Bona, and also Zamagna, Cerva and Menze. He obtained two basic
clusters for this period by using the generalized blockmodeling approach:

Cluster 1: Basilio, Bona, Bonda, Caboga, Cerva, Georgi, Ghetaldi, Gondola,
Goze, Gradi, Menze, Poza, Saraca, Sorgo, Tudisi, and Zamagna.

Cluster 2: Bosdari, Bucchia, Natali, Pauli, Ragnina, Resti, and Slatarich.

The second cluster contains all new families accepted after the earthquake.

The structure obtained by Batagelj is an example of a center-periphery
model. Most marriages were among the families of the first cluster, there was
no marriage among families of the second cluster, and there were only few
marriages between the two clusters.

4.2.2 A Network Decomposition

In this section only the Ragusan families marriage network of the
second period is analyzed. We remind readers that the direction of the asym-
metric ties, in general, is arbitrary. Here, the permitted ties are ‘down’.

Using the acyclic decomposition with respect to strong connectivity,
three levels were obtained (see Figure 5). In the first and the third level only

6. Here we simply report their findings and note that the Goze family was secen as less
influential.
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C Pauli_>

Figure 5. An Acyclic Model of Ragusan Families Network.

Figure 6. The Graph of Seven First Order Symmetric Components of the Middle Cluster.

CGeorgi D= C! D>———Gondola>

Figure 7. The Graph of Three Second Order Symmetric Components of the Middle Cluster.
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Nal

Figure 8. A Symmetric-Acyclic Decomposition of Ragusan the Families Network.

single families are present. The middle level consists of a cluster C with six-
teen families. The men from the families of the first level choose wives from
the families of the second level and the men from the second level choose
wives from the families of the third level. It is worth noting that five families
are sources in the network providing husbands to the large ‘middle’ cluster of
families, among which husbands (and wives) circulate. These families are
transmitters and there are two families that are sinks.

The internal structure of the second cluster (the middle level in Figure
5) can be revealed by the iteration of the symmetric-acyclic decomposition
method. The symmetric components of the middle cluster C are:

C, = {Bona, Bonda, Caboga, Cerva, Goze, Gradi, Menze, Sorgo,
Zamagna); C, = {Ghetaldi, Saraca}; C3 = {Basilio}; C4 = ({Georgi};
Cs = {Gondola}; C4 = {Poza}; and C; = {Tudisi}.

The graph of the seven (first order) symmetric components (clusters) of
the cluster C is presented in Figure 6. This reduced graph has three (second
order) symmetric components: C’y = {C|,C,,C3,C¢,C7}; C7 = {Georgi}
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and C"; = {Gondola}.
Their reduced graph (see Figure 7) is a single symmetric component.
All three steps of the hierarchical decomposition can be seen in Figure 8.

4.2.3 A Generalized Blockmodeling Approach

Based on a three levels network decomposition two pre-specified
models can be assumed. (See Table 2 for the block types.) The first is

nul,reg,sym nul nul
nul,cre,rre nul,reg,sym nul
nul,cre,rre nul,cre,rre nul,reg,sym

The second pre-specified model is similar but with one difference: ‘reg’ is
excluded from the diagonal elements (this model has more precisely defined
blocks in the lower triangle than in the general case from Section 3.3.4):

nul,sym nul nul
nul,cre,rre nul,sym nul
nul,cre,rre nul,cre,rre nul,sym

Only the second model is symmetric-acyclic. The penalties in each cell were
assumed in accordance with Section 3.3.4. For both models the same cluster-
ing of families was obtained (compare Figure 8):

Cluster 1: Natali, Slatarich.

Cluster 2: Basilio, Bona, Bonda, Caboga, Cerva, Georgi, Ghetaldi, Gondola,
Goze, Gradi, Menze, Poza, Saraca, Sorgo, Tudisi, Zamagna.

Cluster 3: Bosdari, Bucchia, Pauli, Ragnina, Resti.

The permuted original relational matrix for this clustering was given in Table
3. The obtained models are

nul nul | nul

cre | reg | nul

nul rre nul

and
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nul nul nul

cre | sym | nul

nul rre nul

The first has no inconsistencies and, for the second, there are 28 inconsisten-
cies in the middle diagonal block. These inconsistencies are produced by
non-symmetric ties.

For the clusterings with larger number of clusters (4, 5 or 6) the solu-
tions for the first model have no inconsistencies. All obtained clusterings
have the same second cluster. There are some splits, as we can expect from
the theory of decomposition, of the first and/or the third cluster.

When the structure inside the cluster in one of the levels of the
symmetric-acyclic decomposition is not clearly symmetric some other types
of the structure can be tested by applying the blockmodeling approach to this
cluster separately. In this case an appropriate model should be pre-specified.
As the iterative decomposition is based on the symmetric components of the
cluster the blockmodeling approach is more appropriate to search for also
other types of structures (for example, a center-periphery structure).

Using pre-specified blockmodeling on the subgraph induced by the
cluster C, the following results were obtained which imply the ordering
within the second cluster in Table 3 is:

(1) symmetric clusters model ({nul} on out-diagonal and
{com,sym} on the diagonal with penalties 1) gives for 7 clusters
the same clustering as was obtained at the first step of the iterative
procedure;

(2) center-periphery model ({nul,one} with penalty 1 on the out-
diagonal, {com} with penalty 10 on the diagonal, {nul} with
penalty 100 as the first diagonal element) gives the following 4
clusters of C:

Periphery: Basilio, Bonda, Cerva, Gondola, Gradi, Saraca,
Tudisi, Zamagna.

Center 1. Bona, Georgi, Ghetaldi.
Center 2: Caboga, Menze.

Center 3: Goze, Poza, Sorgo.
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5. Discussion

The above analyses can be located within the domain of blockmodeling
insofar as they were designed to partition social networks. However, several
methodological conclusions can be drawn from these analyses and are worth
stressing. On the blockmodeling side, we emphasize that the analyses
featured a generalized version of blockmodeling and pre-specified models
were used. Both represent major departures from conventional blockmodel-
ing. The symmetric-acyclic decomposition facilitates (or forces) analysts to
consider the internal structure of the blocks of a blockmodel. This is a desir-
able feature that is absent in most blockmodeling efforts. Of course, once par-
titions and the induced blocks have been discerned via blockmodeling, their
internal structure can be examined. Our point is this is seldom done and the
proposed decomposition naturally directs our attention to the internal struc-
ture of blocks.

A second feature worth noting is that the two methods proposed here
are concerned with hierarchy and levels in some sense. As is made clear in
the multiple clusterings in the constructed example, there need not be a single
partition that fits better than all others. This complicates the notion of hierar-
chy and more care may be in order when hierarchy is discussed. The number
of levels is obtained from the Hasse diagram (for example, in Figure 3) and
seems a good foundation on which to base discussions of levels and, more
generally, hierarchy. Conventional blockmodeling can lead to structures that
can be interpreted in term of hierarchy. However, as implemented here the
methods we propose are predicated on hierarchy and the best fitting hierarchi-
cal partitions can be delineated. This is seen in the comparison of the parti-
tion reported by Batagelj (1996a) and summarized in Section 4.2.1 here, with
the partition shown in Section 4.2.2. One is richer than the other through cap-
turing hierarchy.

A third feature to note is that, both the symmetric-acyclic decomposi-
tion and the ranked clusters blockmodel methods have their origins located
firmly in substance. By thinking in terms of ranked clusters, as a theoretical
specification, we were able to formulate the new block type, a new blockmo-
del type and the symmetric-acyclic decomposition as tools for delineating
ranked structures.

However, some problems do remain and concern the fact that the
ranked clusters model did not fit exactly. By focusing our attention on the
block types we were able to locate asymmetric ties within diagonal blocks
and those ties that violate the acyclic specification. The blockmodeling
approach also enabled us to weight each type of inconsistency differently.
The relative weighting of the types of inconsistencies that we used seems
appropriate: inconsistencies of the acyclic condition seem more serious. We
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have not explored the use of differing magnitudes of the weights beyond the
one described in Section 3.3.4.

The methods we use allows us to describe the best fitting partitions of a
given type and are appropriate even when the ranked clusters model does not
fit the network data perfectly. No statistical measure of fit is needed beyond
this: it is hard to beat the best as the criterion function counts only the excep-
tions to a perfect ranked clusters structure. Beyond this, however, some addi-
tional thought needs to be given to the use of measures of fit. While we
report measures of fit, we do not have an assurance that the structure we have
described as a ranked clusters model really is a ranked clusters model.
Ideally, we need some threshold so that a values below this threshold are con-
sistent with a ranked clusters structures and values above it are not.
Sufficiently large values of the criterion funcion mean there are too many
inconsistencies to claim that the model is close enough to the ideal ranked
clusters forms. Intuitively, the models we have developed in Section 4 seem
to be ranked clusters models. After all, the hypothetical model was con-
structed in terms of ranked clusters with some inconsistencies built into the
data and the generalized blockmodeling method located these inconsisten-
cies. The movement of grooms or brides across the Ragusan noble families
has a compelling structure and interpretation. Finally, we note that the
symmetric-acyclic approach is very efficient for very large networks but is
sensitive to the violations of the acyclic assumption of the models.

All computations were done by using the programs Pajek (for the
symmetric-acyclic decomposition) and MODEL2 (for the generalized block-
modeling). Both are freely available for noncommercial use at the address:
http://vlado.fmf.uni-1j.si/pub/networks.
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