COMMUNICATION

HAMILTONIAN CYCLES IN THE CARTESIAN PRODUCT OF A TREE AND A CYCLE*

Vladimir BATAGELJ and Tomaž PISANSKI

Department of Mathematics, Institute of Mathematics, Physics, and Mechanics, Jadranska 19, 61000 Ljubljana, Yugoslavia

Communicated by B. Grünbaum Received 24 September 1981

Theorem. Let $G = T \times C_n$ be the cartesian product of an n-cycle C_n and a tree T with the maximum degree $\Delta(T) \ge 2$. Then G possesses a Hamiltonian cycle if and only if $\Delta(T) \le n$.

Proof. We label the vertices of the cycle C_n by the elements of the cyclic group \mathbb{Z}_n in such a way that the vertex i is adjacent to i+1 where "plus" is taken in \mathbb{Z}_n . The vertices of $G = T \times C_n$ are ordered pairs of the form $(t, i) \in V(G) = V(T) \times V(C_n)$. Such a vertex will be denoted by t^i for short.

Let u be any vertex of T having maximum degree: $deg(u) = \Delta(T)$. Furthermore, let the set S be defined as follows.

$$S = \{ u^i \in V(G) \mid i \in \mathbb{Z}_n \}.$$

Clearly S has exactly n elements. By H we denote the graph obtained from G by removing the n vertices in the set S. Obviously H is disconnected and has at least $\Delta(T)$ components. If $n < \Delta(T)$ then G has no Hamiltonian cycle, (see for instance [1, Theorem 3.1]). It remains to construct a Hamiltonian cycle in the case $n \ge \Delta(T)$. Here is a construction! Take an arbitrary edge-coloring of T with n colors. For notational convenience we choose the color set to be \mathbb{Z}_n . The n-edge-coloring of T exists as $n \ge \Delta(T)$ and the tree T is a bipartite graph which is $\Delta(T)$ -edge-colorable (see for instance [3, Theorem 2.2]).

Let $V(T) = V^- \cup V^+$ be the bipartition of T. Define a permutation $h: V(G) \rightarrow V(G)$ by the following rules:

- (i) If an edge st of T with $s \in V^-$ and $t \in V^+$ is colored with $i \in \mathbb{Z}_n$, then let $h(s^i) = t^i$ and let $h(t^{i+1}) = s^{i+1}$.
 - (ii) If $s \in V^-$ and there is no edge st colored with $i \in \mathbb{Z}_n$, then let $h(s^i) = s^{i+1}$.
 - (iii) If $t \in V^+$ and there is no edge st colored with $i \in \mathbb{Z}_n$, then let $h(t^{i+1}) = t^i$.

0012-365X/82/0000-0000/\$02.75 © 1982 North-Holland

^{*} Research partially supported by the Boris Kidrič Fund, Slovenia, Yugoslavia.

The reader may verify that under the assumptions above h is a cyclic permutation defining a Hamiltonian cycle in G. \square

If the complete graph K_n is substituted for C_n in the statement of the theorem we obtain a similar but in a sense weaker result of Zaretsky [6]. Since $\Delta(T) < |V(T)| \le 2|V(T)| - 2$ (for $|V(T)| \ge 2$) the theorem implies an observation by Sabidussi [5] and some results of Rosenfeld and Barnette [4].

For an arbitrary connected graph G define the cyclic Hamiltonicity cH(G) as a minimal n for which $G \times C_n$ is Hamiltonian. cH(G) = 1 if and only if G is Hamiltonian. For a tree T our theorem shows that $cH(T) = \Delta(T)$. Let us define for a connected graph G the number $\nabla(G)$ as

$$\nabla(G) = \min\{\Delta(T) \mid T \text{ is a spanning tree for } G\}.$$

Clearly $\nabla(G) \leq \Delta(G)$. Our theorem implies

(*)
$$cH(G) \leq \nabla(G)$$
.

There exist graphs with arbitrary large cyclic Hamiltonicity for which strict inequality holds in (*). For instance for the complete bipartite graph $K_{2,2r}$ we have $cH(K_{2,2r}) = r$, yet $\nabla(K_{2,2r}) = r+1$. It is possible to prove that $cH(G) \le \nabla(G) \le cH(G)+1$. From this inequality it follows that a Hamiltonian cycle exists in $G \times C_n$ for each $n \ge cH(G)$. The proofs will appear elsewhere.

References

- J.-C. Bermond, Hamiltonian graphs, in: L.W. Beineke and R.J. Wilson, eds., Selected Topics in Graph Theory (Academic Press, London, 1978).
- [2] W. Dörfler and H. Music, A Bibliographic Survey of Products of Graphs, Typescript, 1981.
- [3] S. Fiorini and R.J. Wilson, Edge-colorings of graphs, in: L.W. Beineke and R.J. Wilson, eds., Selected Topics in Graph Theory (Academic Press, London, 1978).
- [4] M. Rosenfeld and D. Barnette, Hamiltonian circuits in certain prisms, Discrete Math. 5 (1973) 389–394.
- [5] G. Sabidussi, Graphs with given group and given graph-theoretical properties. Canad. J. Math. 9 (1957) 515–525.
- [6] K.A. Zaretsky, On a Hamiltonian cycle and a Hamiltonian path in the cartesian product of two graphs (Russian), Kibernetika 5 (1966) 4–11.