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Abstract. In this paper the notion of convexity of clusterings for the given ordering of units is
introduced. In the case when at least one (optimal) solution of the clustering problem is convex, dynamic
programming leads to a polynomial algorithm with complexity O(kn®). We prove that, for several
criterion functions, convex optimal clusterings exist when dissimilarity is pyramidal for a given ordering
of units,
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1. Introduction. This paper is inspired by the paper by Brucker [3] and, for
Theorem 3, by the paper by Hwang et al. [9]. Its main contribution is the
introduction of the notion of convex clustering for a given ordering of units, This
allows us to extend and generalize the results in the papers mentioned from the
case where units are represented by real numbers to arbitrary sets of units equipped
by a given ordering; for example, units ordered with respect to the time scale.

Let us start with the formal setting of the clustering problem. We use the
notations from [4]:

& is the space of units.

E is the finite set of units, n = card(E).
C € E is a cluster, C # (.

C = {C;} is a clustering,

® is a set of feasible clusterings.

P: ® —» Ry is a criterion function.

Generally the clusters of a clustering C need not be pairwise disjoint; yet clustering
theory and practice deal mainly with clusterings which are partitions of E. We
denote the set of all partitions of E into k classes (clusters) by Pi(E). With these
notions we can express the clustering problem (®, P) as follows:

Determine the clustering C* € ®, for which

P(C*) = min P(C).

Ce®
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Because the set of units E is finite, the set of feasible clusterings is also finite.
Therefore, the set Min(®, P) of all solutions of the problem (optimal clusterings)
is not empty. We denote the value of a criterion function for an optimal clustering
by min(®, P).

When a linear ordering < is given on the set E, we denote the set of feasible
clusterings by (@, <).

2. Criterion Functions. Joining individual units into a cluster C we make a certain
“error,” we create a certain “tension” among them—we denote this quantity by
p(C). The criterion function P(C) combines these “partial/local errors” into a
“global error.” Usually it takes the form:

S: PC)= Y pO)

CeC

or

M: P(C) = max p(C),

CeC

which can be unified and generalized in the following way:
Let (R, @, <) be an ordered abelian monoid, then

®@: PO =D pC)

CeC
The “cluster-error” p(C) usually has the properties:
p(C) =0 and, YXeE, p({X})=0.

In what follows we assume that these properties of p(C) hold.
To express the “cluster-error” p(C) we define a dissimilarity on the space of units:

d:€& x &-R§
for which we require,
VXeéd, dX,X)=0 and, VX, Yeé&, dX,Y)=dY, X).
Now we can define several “cluster-error” functions:

S: pO= Y wX)wY) dX,7Y)

X, YeC

$: o) Y wX)-w(Y)-d(X, Y),

5 w(C) X,YeC
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where w: & — R" is a weight on units, which is extended to clusters by
w{X}) =wX), Xeé,
wCiuC)=wC)+wC), CnC,=@.
Often w(X) = 1 holds for each X € &.

M: p(C) = max d(X, Y).

X,YeC

Several other types of criterion functions were proposed in the literature.
We use labels in front of the names of (partial) criterion functions to denote
types of criterion functions. For example,

SM:  P(C)= Y max d(X,Y).
CeC X,YeC

Another form of “cluster-error” function, which is frequently used in practice,
is based on the notion of the leader or representative of the cluster:

R:  p(C)=min ) wX) d(X, L),

LeF XeC

where F = ¥ is the set of representatives and ¥ is the space of representatives.
The element C e F, which minimizes the expression on the right, is called the
representative of cluster C. It is not always uniquely determined. In the following
we assume that ¥ < §&.

Let us denote the sum from the definition of “cluster-error” function R by

q(C,L)= ) w(X)-dX,L),

XeC
then we have
q(C, L) = ¢(C, C) = p(C).

A standard example of such a criterion function is variance or inertia: for
E < R", F =R" and

dX,L)=

I

(x; — Ii)zs

m
=1

a uniquely determined representative C exists—centre of gravity. In this case the
criterion function SR is called the Ward criterion function.
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3. Convex Clusterings. The clustering C € (®, <) is convex for the linear ordering
< if and only if

VC,,C,eC,3ZeE:(VXeC,, YeC (X <ZAZ<Y)
vV¥XeC,, YeC, (Y<Z A Z<X)).
It follows immediately from the definition that each convex clustering consists of
intervals C; = [X,, X,] = {X€E: X, <X A X <X,}.
Let < be a linear ordering in the set of units E. The dissimilarity d is compatible
with < if and only if
X<Y<XZ = max(dX,Y)dY,Z)<dX,2Z).

A dissimilarity d is pyramidal [2] over E if and only if a linear order < on E exists
such that d is compatible with <.
An example of the pyramidal dissimilarity for every (E, <), E S R, is

dX,Y)=f(1X - Y]),
where f is an increasing function satisfying the additional condition f(0) = 0.

LemMA 1. Suppose that the dissimilarity d is pyramidal for (E, <). Then, for each
C < E, the equality

max d(X, Y) = d(min(C), max(C)),

X, YeC
where min(C) and max(C) are the least and the greatest element of C, holds.

ProoF. Suppose d(X,, Y;) = max d(X, Y)over all X, Ye C, and let X, = min(C),

Y, = max(C). Then X, <Y, <Y, and, by pyramidality of d, d(X,, Y,) > d(X,, Y;).

Again by pyramidality of d and maximality of d(X, Y;), the equality d(X,, Y}) =

d(X,, Y,) follows. Therefore, d(X,, Y;) = d(X,, Y,), proving the lemma. O
The role of the pyramidality can be seen from the following theorem:

THEOREM 1. Let d be pyramidal for (E, <) and let the operation @ be compatible
with the relation <, i.e.,

a<bhb = a®@c<b@c

Then the problem ((P,, <), @ M) has a convex solution.
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ProoF. Suppose that Ce Min((P,, <), ®M) is not convex. We can transform

this clustering to a convex optimal clustering. To show this let X be the smallest
unit with respect to < for which a cluster C, € C exists such that X ¢ C, and

min(C,) < X < max(C,).

Because C is not convex such a unit always exists. Note that X = min(C,). Define
a new clustering

C =(C\{C., C})u{C,C},

where the clusters C, and C, are determined as follows:

(a) max(C,) < max(C,); in this case we define
C.=[min(C,)), X], C,=(C,uCN\C,.

Because min(C,) < X = min(C,) < max(C,) < max(C,) we have, using Lemma
1,

p(C,) = d(min(C,), X) < d(min(C,), max(C,)) = p(C.),
p(C;) = d(min(C;), max(C;)) < d(min(C,), max(C,)) = p(C,).
(b) max(C,) = max(C,); now we set
C.={min(C,)}, C,=(C,uC\C,
and we obtain, again using Lemma 1,
p(C) =0 < p(C,),
p(C;) = d(min(C;), max(C})) < d(min(C,), max(C,)) = p(C.,).
In both cases, because @ is compatible with <, we have
p(C,) @ p(C}) < p(C,) @ p(C,).

Therefore,

PC)=pC)®pC)® D pO)

CeC{Cu, Ci}

<pCIOPC)® @D pC)=D p(C)=PC)

CeC\{Cu, Ci} CeC
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is an optimal clustering, which has a longer initial interval covered by convex
clusters. Because the set E is finite we obtain a convex optimal clustering in a
finite number of steps by repeatedly applying this procedure. ]
THEOREM 2.  The problem ((P,, <), ®S) does not always have a convex solution.
Proor. Consider the following (counter)example:

E= {Xs Y;a YZ,---s Ym Z}’
where X <Y, <Y, < <Y, <Z and

d(X9 Y:)=d(zs YJ=a, a>0, d(Y;s 13)=0-» d(Xs Z)=b>ﬂ

Evidently the dissimilarity d is pyramidal for (E, <). For any clustering in two
clusters we have either

(a) units X and Z belong to the same cluster
Ca = {C-ﬂl’ CUZ}’ Cﬂ'l = {X) Z} u Cs Caz — E\Cals

or

(b) units X and Z belong to different clusters
C, = {Cp1, Cs2)}, Cyi ={X}uC, C,, = E\C,,.
In both cases X, Z ¢ C. Suppose that the set C consists of k units. Then
P(Cay) =2b + dka,  p(Cy,) = 2ka,
P(Cy2) =0, P(Cyz) = 2(n — K)a.
Therefore, for the criterion function of the form S8,
P(C))=2b+ 4ka and P(C,) = 2na
and, for the criterion function of the form MS,
P(C,) =2b+ 4ka and P(C,) = 2a max(k,n — k) > 2a[n/27.
In both cases we have
C* = {{X,Z}, {Yb ) & — K:}}

provided that n is big enough (n > 2b/a). The clustering C* is not convex. O
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LEMMA 2 [1].  In a minimal clustering for the problem (P,, SR) each unit is assigned
to a nearest representative. Precisely: if C* is a minimal clustering, then

¥C,eC*, VXeC, VC,eC*\{C,}, dx,C)<dX,C,).
Proor. Let C be any neighboring clustering to C* with respect to transitions
C=(C*\{C,, G v {C\{X}, C, v {X]}.
Since C* is minimal we have

0 < P(C) — P(C¥)
= q(C\{X}, C\{X)) + 4(C, v {X}, C, U {X}) — 4(C,, C,) — 4(C,, C.)
< q(C\{X}, C) +4q(C, v {X}, C,) — 4(C,, C)) — 4(C,, C,)
= wX)d(X, C,) — d(X, C,)

and therefore, because w(X) > 0, finally
dX,Cr=dX,C) O

In the following we denote by I" the set of units and representatives of clusters
from feasible clusterings over these units.

LeMMA 3. Let d be pyramidal for (I', <). Then, for every C € C € Min((P,, <), SR),
there is a representative C such that min(C) < € < max(C).

ProOOF. Suppose that, for a representative C, C < min(C). Since, for every X € C,
min(C) < X <max(C) hold, we have, by pyramidality, d(X, min(C)) < d(X, C). It
follows that min(C) is a representative as well. O

LEMMA 4. Let d be pyramidal for (', <). Let C,, C,e€Ce Min((P,, <), SR) and
let XeC,. If X<C,<C,, then d(X,C,) = d(X, C,).

Proor. By Lemma 2 we have d(X, C,) < d(X, C,). On the other hand, it follows
by pyramidality that d(X, C,) < d(X, C,). O

THEOREM 3. Let d be pyramidal for (I, <). Then the problem ((P,, <), SR) has a
convex solution.

Proor. Suppose that Ce Min((P,, <), SR) is not convex. We are going to
transform this clustering to a convex optimal clustering.
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Let X be the smallest unit with respect to < for which a cluster C, e C exists
such that X ¢ C, and

min(C,) < X < max(C,).

Because C is not convex such a unit always exists. Assume X € C,.
Note first that X = min(C,). Hence X < C,. Also by assumption,

min(C,) < X < max(C,).

Therefore, according to Lemma 3, there are five cases to be considered (with respect
to the position of X and C,):

Case 1. min(C )< X <X, < C, < max(C,).
Case 2. min(C,) < X <X C, < C, <max(C,).
Case 3. min(C,) < X < C, <max(C,) <C,.
Case 4. min(C,) < C, < X <max(C,) <C,.
Case 5. min(C,) < C, < X < C, <max(C,).

In all the cases we can define a new clustering
C' =(C\{C,, C,Hu{C., C}
such that we obtain a longer initial interval covered by convex clusters.
Case 1. Define the clusters C, and C,, as follows:
C. = C,\[min(C,), X),
C, = C ulmin(C,), X).

Here [min(C,), X) denotes the interval between min(C,) and X including min(C,)
and excluding X. Due to the choice of X, all the units between min(C,) and X
belong to C,. Let Y be such a unit. Then, by Lemma 4, d(Y,C,) = d(Y,C,). It
follows that the new clustering is also optimal.

Cases 2—4. In all these cases define the clusters C,, and C,, as follows:
C=Coulxl
C, = C\{X}.
Now we have
p(C)) + p(C}) = g(C,, C) + 4¢(C;, C))
<4q(C,, C) +4(C,, C,)

= ¢(C,, C,) + w(X)-d(X, C) + ¢(C,, C,) — w(X)-d(X, C,)
= p(C,) + p(C,) + w(X)- (X, C,)) — d(X, C,)).
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We claim that in all the cases we have d(X, C,) = d(X, C,). Indeed, for Cases 2
and 3 the fact follows from Lemma 4. For Case 4 we have the following sequence
of inequalities, which hold by the pyramidality and by Lemma 2:

d(X, C,) < d(max(C,), C,) < d(max(C,), C,) < d(X, C,) < d(X, C,).

It follows that d(X, C,) = d(X, C,).

Case 5. In this last case define the clusters C, and C, as follows:
C, = C,\{max(C,)},
C, = C,u {max(C,)}.

By pyramidality, d(max(C,), C,) < d(max(C,),C,) and, on the other hand, by
Lemma 2, d(max(C,), C,) > d(max(C,), C,). It follows that we again have an
optimal clustering. Yet it is not necessary that we obtained a longer initial interval
covered by convex clusters. However, we can repeat this procedure until we (in
finite number of steps) reach the unit X. Note that it is possible in this procedure
that at some step we no longer have Case 5. However, then one of the cases 1-4
occurs. In any case, after a finite number of steps we obtain a longer initial interval
covered by convex clusters. O

4. Dynamic Programming and Clustering. Combinatorial optimization problems
can often be successfully solved by the branch and bound method or by dynamic
programming. However, it seems that, in general, because of the combinatorial
explosion, they are not appropriate for solving the clustering problem [7], [10],
[11]; yet, for some special problems, dynamic programming leads to efficient
algorithms.

Let us consider the problem (P,(E), @) with a solution

CHE) = {Ct, C%,...,C¥}.
Then
F-1(E\C}) = {C%, C%,...,C¥_y}
is a solution of the problem (P, _(E\C¥), @) and
P(CE(E)) = P(C-((E\CY)) @ p(C).
Denoting P*(E, k) = P(C}(E)) we get the Jensen equality [10]:

p(E), B e
PYE,K) =19 min (PHE\C.k— 1)@ p(C), k> 1.

@<=C<E
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This is a dynamic programming (Bellman) equation which, at least in theory, allows
us to solve the clustering problem by the following algorithm:

for all C: & = C < E do begin P*[C, 1]:= p(C); opt[C, 1]:= C end;
for s:= 2 to k do begin
{D c E acard(D)>s, s<k,
for all D:
D=E, s=k,
pbest := o0;
for all C: C = D A card(D\C) = s — 1 A max(D)e C do begin
pt:= P*[D\C, s — 11 @ p(C);
if pt < pbest then begin pbest := pt; chest:= C end

do begin

end;
P*[D, s]:= pbest; opt[D, s]:= cbest
end
end;
C:=E; C*:= (7;

for s:= k downto 1 do begin
D:=opi[C,5]; C*:=C* u {D}; C:= C\D
end;

In the algorithm max(D) is defined with respect to a given numeration of the set
of units E.

In general this algorithm has exponential complexity. Therefore it can be used
only for small problems (less than 20 units).

In the case when at least one solution of the problem ((Py, <), @) is convex,
dynamic programming leads to a polynomial algorithm which is essentially a
generalization of Fisher’s algorithm [5], [8], [6, p. 63]:

for i:= 1 to n do begin P*[i, 1]:= p([1, i]); opt[i, 1] = 1 end;
for s:= 2 to k do begin
if s = k then m:= n else m:= s;
for i:= m to n do begin
pbest := o0;
for j:= s to i do begin
pti= P*[j— 1,5 — 11@® p(Lj. i)
if pt < pbest then begin pbest := pt; chest:= j end

end;
P*[i, s]:= pbest; opt[i, s]:= cbest
end
end;
r:=n; C*:= &;

for s:= k downto 1 do begin
l:=opt[r,s]; C*:=C*u {[l,r]}; r:=1—1
end;
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The reduction of complexity is achieved by limiting the search for an optimal
clustering to the intervals with respect to a given ordering <. It is easy to see that
the complexity of the generalized Fisher algorithm is O(kn?).

5. Conclusion. The dynamic programming approach is not applicable for solving
the general clustering problem; but it leads to a polynomial algorithm for the
problems with at least one convex optimal solution. In this paper we proved that
such a solution often exists when the underlying dissimilarity is pyramidal for a
given ordering of units.
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