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CLUSTERING WITH RELATIONAL CONSTRAINT

ANUSKA FERLIGOJ AND VLADIMIR BATAGELJ

UNIVERSITY EDVARD KARDELJ

The paper deals with clustering problems where grouping is constrained by a symmetric and
reflexive relation. For solving clustering problems with relational constraints two methods are
adapted: the “standard” hierarchical clustering procedure based on the Lance and Williams for-
mula, and local optimization procedure, CLUDIA. To illustrate these procedures, clusterings of
the European countries are given based on the developmental indicators where the relation is
determined by the geographical neighbourhoods of countries.

Key Word: optimization approach to clustering.

The clustering problem can be treated as an optimization problem over a set of
clusterings. In some cases the set of (feasible) clusterings is determined by some additional
conditions—constraints. In these cases we speak of clustering with constraints.

The paper deals with clustering methods where grouping is constrained by a sym-
metric and reflexive relation. For example, this is the case when the clusters of (geogra-
phical) regions also have to be internally connected. For solving this problem two me-
thods are presented which are extensions of clustering methods for the usual clustering
problem.

Clustering Problem

Let us start with the formal setting of the clustering problem (with constraints). First
we introduce some basic notions [Batagelj, Note 1; Ferligoj & Batagelj, Note 2]:

E —set of units
CckE —cluster; C + &
€ < P(E) —set of clusters—clustering,

where 2(E) is a power set of E

d: (C,, Cy)>R*u{0} —dissimilarity between clusters

P:. ¥ |—>;9i'+u{0} —{clustering) criterion function
Usually the criterion function P takes the form
P@®) =} p(C)
Ce¥
or
P(%) = max p(C)
Ce¥

where p(C) is the contribution of the cluster C € € to the value of the criterion function.
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To unify the description we introduce the operation & which stands for +, or for
max, or for some other operation.
The criterion funcion P is compatible with dissimilarity d iff:

(i) P(®)= & p(C)
(ii) p(C) = min (p(D) & p(C — D) & d(D, C — D)) (1)
p=D=C
(iii) VX e E:p({X})=0

and (R +u{0}, &, 0, <) is an ordered abelian monoid.

Some examples (maximum; minimum and Ward’s hierarchical clustering method;
Sneath & Sokal, 1973; Everitt, 1974) of criterion functions compatible with dissimilarity d
are presented in the Table 1.

With these notions we can express the clustering problem (with constraints) as follows:

Find the clustering €* for which

P(€*) = min P(%)
€ed
where @ is the set of feasible clusterings, which is determined with the (additional) con-
straints, which are not expressed with criterion function P.

In the extreme case the set of feasible clusterings can also be empty—the clustering
problem has no solution.

Some examples of sets of feasible clusterings are:

®, = {¥|¥ is a partition of E into k sets}
ofter ecalled complete clustering into k clusters

or

®(R) = {€|¥ is a partition of E and every
C € € has to induce a connected subgraph
(C, R n C x C) in the graph (E, R)}
called clustering with relational constraint R;
where R € E x E is a symmetric and reflexive
relation

or
®[a, b] = {€|¥ is a partition of E and for every

Ce¥%:a<|C|<b}
or combinations of them.

TABLE 1
Examples of Criterion Functions Compatible with Dissimilarity

& d(C,, C,) plC)

max max d(X,Y) max d(X,Y)
XeCy,YeC; X.¥YeC

+ min  dX, Y) value of the minimal spanning tree over
Al el C with edge values d(X, Y)

+ 2,0 Y B0
my +m, XeC

where m; = |C,|, C; = ): X/m; and d, is the euclidean distance.
Xel:
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In some cases the clustering problem can be shown to be equivalent to an opti-
mization problem, for which the efficient (polynomial in the size of the problem) exact
algorithms are known. But it seems that most of the instances of the clustering problem
are NP-complete: it is believed that there is no efficient exact algorithm for solving the
problem [Garey & Johnson, 1979, pp. 281]. Therefore, usually approximative methods as:
agglomerative (hierarchical), divisive, local optimization, reduction of the set of feasible
clusterings to a small subset of “promising” clusterings, ... [Sneath & Sokal, 1973; Everitt,
1974; Hartigan, 1975; Spith, 1977; Lefkovitch, 1980] have to be used.

Let us try to explain in the proposed formalization the connection between the clus-
tering problem and the agglomerative (hierarchical) methods for its solution.

The clustering % is a tree clustering iff

(i) Ee¥

(ii) ¥C,,C,e¥4:C,cC, VC,6C, VNG, = (2)
and it is a complete tree clustering iff also

(iii) VAXeE:{X}e®
holds.

If the criterion function P is compatible with the dissimilarity d and the operation &
distributes over min (this is obvious if & is + or max)

a & min b; = min (a & b;)

it can be shown [Batagelj, Note 1] that the equality
P(%¥)= minP(%)=  min (P(%) & d(C;, C3)) &)

€ e Dy C1,C2e€e®r+1

holds. From (3) we can see the following heuristic (approximation)

P(€¥) ~ P($¥,,) & min diC,, C,) (4)

C1,C2e€k+1*

which is the basis for usual (binary) hierarchical clustering method. This method gener-
ates, starting with €, = {{X}| X e E}, a sequence of complete clusterings

(gn! qgn—l! an—z’---- {gls qgl

which forms a complete tree clustering €7 = (Ji=; ;.

Clustering with Relational Constraint

As mentioned before for a given symmetric and reflexive relation R = E x E the set
of feasible clusterings ®,(R) consists of complete clusterings into k clusters % for which the
units of every cluster C € % induce a connected subgraph (C, R n C x C) in the graph
(E, R). Without loss of generality we can request that (E, R) has to be connected; if it is
not, we can analyse each component separately.

For solving the corresponding clustering problem with relational constraint we adap-
ted two methods:

—the “standard” hierarchical clustering procedure based on Lance and Williams
[1967] formula:

dC,u C,,C)=ua,d(C,, C)+a, dC,, C)
+ B d(C,, C) + 71d(C,, C) — d(C,, C)|. (5)
The equality (3) holds also for @,(R).
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—the local optimization procedure CLUDIA [Spith, 1977] for the cases
1
P@)= T KO,  AO=37c T dX,Y)
Ce® X, YeC

and
P(%) = max p(C), p(C) = max d(X,Y)

Ce¥ X.YeC

which allow quick updates of p(C). The criterion function of the Ward’s method is the
special case of the first type of criterion function for d(X, Y) = | X — Y ||%.

In the descriptions of the procedures the (constraint) relation R is used in the form of
the set R(X) of neighbours of unit/cluster X

RX)={Y|X RY}.

Procedure for Hierarchical Clustering with Relational Constraint

The procedure for hierarchical clustering with relational constraint is a straightfor-
ward adaption of ordinary hierarchical clustering procedure:

1. Each unit is a cluster:
C.={X}) X, €E, i=1 200

2. Repeat while there exist at least two neighbours:
2.1 Determine the nearest pair of neighbours (C,, C,)

d(C,, C,) = min {d(C,, C))|C,R C, A u# v}

2.2. Fuse clusters C,, and C, into a new cluster C, :
2.2.1. Substitute clusters C, and C, by the cluster C, ;
2.2.2. Adjust the relation R:

R(C,) = {C,} U R(C,) U R(C,) — {C,, C;}

RC)v {C}-{C,.C} C,eR(C)

RO = {R(Cs) otherwise

2.2.3. Determine the dissimilarities between the cluster C, and the other clusters accord-
ing to the Lance and Williams formula (5).

The hierarchical solutions of clustering problems with relational constraints obtained
by this procedure were often nonmonotonic. That means: let h be the (clustering) level of
clusters (in the dendrogram) defined as follows:

(i) XeE = h{X})=0.
(i) C.=C,JC, = KC)=dC,, Co (6)
Then the clustering € is monotonic iff always:
h(C,) = max (h(C,), h(C,)).

We proved the following theorem:
The hierarchical clustering procedure based on the Lance and Williams formula (5)
with coefficients («;, «,, f, 7) guarantees monotonic clusterings for each dissimilarity
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matrix D and for each relational constraint R (R # E x E, (E, R) is a connected graph) iff
at each step of the clustering procedure the following conditions hold:

(1) % + oy 0.
(ii) 7 + min (a,, o;) > 0.
(iii) min (&t + o, Y + min (aq, &) + f = 1. (7

The proof of the theorem is given in the Appendix.

Among the common clustering strategies: minimum, maximum, centroid, median,
group average, Ward’s [Sneath & Sokal, 1973; Everitt, 1974], only maximum strategy
fulfills the third condition (7iii). The Ward’s strategy coefficients can be adapted (to fulfill
also this condition) for example in the following ways:

a1=m5+m’, _m,+m

m m

where m,, m, and m, are the numbers of units in clusters C,, C, and C;

m=m,+ m, + mg;and
p=1—min (a, a,), =0
or

mS
= ——, = max (o, &,).
B " ¥ (0, 03)

The impact of these variations on the Ward’s strategy was not studied till now.

Local Optimization Procedure for Clustering with Relational Constraint
The main idea of a local optimization procedure is quite simple:

1. Determine (read or random generate) the initial clustering € € ®,(R).
2. While there exist X € C, € ¥ and C, € ¥: P(¥) > P(¥)
where ¢ = (¢ — {C,, C,})  {C, — {X}, C, | {X}} and subgraphs induced by
C,—{X}and C, () {X} in (E, R) are connected
repeat:
2.1. Substitute % by €.

In this procedure the (local optimization) neighbourhood of clusterings is based on the
transformation which transfers the unit X from the cluster C, to the cluster C,. Another
useful transformation is

¢=@-{C,cpU{c,U{rt-{x1c,U{x}—{r}}

ie., the clustering 4" is obtained by interchanging units X € C, and Y € C, in the clus-
tering €. Because this transformation preserves the number of units in clusters it is es-
pecially suitable for solving clustering problems of the type ®[a, b].

Two (sub)problems have still to be solved:

— testing for connectedness of the subgraph induced by a cluster;
— random generation of initial clustering.

The procedure for testing whether the cluster C is connected in (E, R) is the follow-
ing:
1. A=C — {X},S = {X} where X € C is arbitrarily chosen.
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2. While A # & repeat:
21. If 3Y e A: R(Y) () S # & then
211. S=8| ) R(Y)

else
2.1.2. Return (not connected).
22. A=C-S8.

3. Return (connected).

For random generation of initial clustering € € ®,(R) we use the following modifi
cation of the procedure for hierarchical clustering with relational constraint:

W = {{X} | X € E}; the set of completed clusters is empty.

2. While |% | > k and not all clusters are completed repeat:

2.1. Select at random a noncompleted cluster C,.

22. A=R(C,) - {C,}.

2.3. If A # & then:

2.3.1. Select at random cluster C, € A.

2.3.2. Fuse C, and C, into a new cluster C, = C, | ) C,:
¢=¢{){C}-(C,.C,}.

2.3.3. Adjust the relation R:

R(C)={C} | R(C) U R(C) - {C,, C}

{R(CS) U {Cr} g {Cp! Cq} Cs € R(Cr}

R —
() R(C)) otherwise.

Else
2.34. Add C,, to the completed clusters.

Another way, suggested by one of the referees, to obtain random initial clustering is
the following: Take k random seed units; add each of the remaining units in turn at
random to one of the clusters they are connected to.

Note that each ¥ € ®,(R) can be obtained by the described procedure; but not with
the same probability. To approach this goal the random selections in 2.1. and 2.3.1. may
be made to depend on some distributions. For example:

— on the number of units in clusters
— on the number of neighbours of clusters
— on the number of different neighbours of clusters.

All the described procedures are implemented in the collection of clustering pro-
grams CLUSE on CYBER 72 and DEC-10 [Batagelj, Note 3].

In the case of other types of constraints the local optimization technique with appro-
priately selected neighbourhood (transformations) of clusterings is a general method for
solving such problems. In the program system CLUSE this approach is used to solve the
clustering problems of the type ®,[a, b](R), ie., the clustering problems with relation
constraint R into k clusters where the number of units in each cluster has to be inside the
interval [a, b].

Some Other Approaches to the Clustering with Constraints

Recently Lefkovitch [1980] treated the clustering problem with constraints (con-
ditional clustering) proposing a method for generating a limited number of subsets from
which the optimal partitions and coverings can be obtained with exact methods. The
constraints are considered while generating subsets.
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A reviewer has pointed out that there are some similarities between our work and the
work of some authors in the French literature. We are especially grateful to Dr.
Christophe Perruchet who sent us copies of the related papers. Lebart [1978], Perruchet
[Note 4], and Lechevallier [1980] are treating the clustering problem with contiguity
constraint. For solving it Lebart and Perruchet proposed the algorithms based on a hier-
archical clustering method, similar to our procedure for hierarchical clustering with rela-
tional constraint. This is the main similarity between these works and our paper.

Example

To illustrate the clustering with relational constraints we clustered the European
countries on the basis of the developmental indicators, where the relation is determined
with the geographical neighbourhood of countries. There are some difficulties to deter-
mine the neighbourhood between some littoral countries (for example: between Ireland
and Spain). In our analysis we used the neighbourhood relation as it is presented
in Table 2.

We considered only 27 European countries—because of lack of the data we excluded
small countries: Andora, Liechtenstein, Vatican, San Marino, Monaco, and Malta.

TABLE 2

HEIGHBOURHOOD RELATION FOR EUROPEAN COUNTRIES

1 Albania 27 11 15

2 Austria 27 12 5 10 24 15

3 Belgium 8 16 10 17 26

4 Bulgaria o i 1 il

5 Czechoslovakia 2 antjacivgsnt: 10 9 10

6 Denmark 1823 s R {3,

7 Finland 29«83 B

8 France 26 voede: Ab 2810y 16 3
9 East Germany 10 .19 23 6

10 West Germany 17 3 16 24 2 5 9 6 8
11 Greece 15 1. .27 4

12 Hungary AR AR B 5

13 Iceland 18 ©1 26010

14 Ireland 26 a3 22

15 Italy 27 a0y 8 24 2

16 Luxembourg 3 an. 10

17 HNetherland 3! 2104126

18 Norway b ¢ 2B Imnsi2h. 13

19 Poland 25 5 Qs 23
20 Portugal 2
21 Romania s 1 2 2T 4
22 Spain 20 14 8

23 Sweden 18 6 9 19 25 7

24 Switzerland 8 15 2 10

25 ‘USSR 18 ke % Rl i Grscqp gy
26 United Kingdom 14t 3¢ g LB 3 8

27 Yugoslavia 21 115 fieraa it fu 21012
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Among the available socio-economic and demographic variables we selected the fol-
lowing ones [The Hammond Almanac, 1980]:

— urban population per capita,

— density of the population,

— population in the largest city per capita,

— per capita income,

— industrial production per total production,
— birthrate,

— deathrate,

— life expectancy,

— number of inhabitants per physician,

— infant mortality,

— enrollment in higher education per capita,
— paved roads per area,

— number of motor vehicles per capita,

— railway mileage per area,

— number of radio-receivers per capita,

— number of television subscribers per capita,
— number of telephone subscribers per capita,
— number of newspaper copies per capita,

— number of inhabitants per hospital bed.

All variables were standardized. To measure the dissimilarities between countries we
used the following coefficient:

where r;; is the Pearson correlation coefficient.

The Table 3 presents the results of local optimization procedures (criterion function
of Ward’s type) for ordinary and relational clustering into six groups for 20 random initial
configurations and for initial configurations obtained by Ward’s hierarchical clustering
strategy. The values of the criterion function for the initial clusterings are denoted with P,
and the values for the corresponding local minima with P_; . The best obtained local
minima of the criterion function P are indicated by an asterisk. The values of the criterion
function of the (initial) clusterings obtained with hierarchical strategies are close to the
obtained best local minima and therefore these clusterings provide a good starting point
for further local optimization which corresponds to the experiences in other similar em-
pirical analyses.

The obtained hiearchical and the best local optimization clusterings are presented in
Table 4. Although the values of the criterion function of the clustering obtained with
hierarchical strategy and of the corresponding best local minimum are very close, there
are some differences between them. The comparison of the best local minima (clusterings)
without and with relational constraint shows that they are quite similar. This means that
the development in European countries is correlated with the geographical neighbour-
hood and tradition. For example, there are two identical groups: the “Scandinavian”
group (Denmark, Finland, Iceland, Norway, and Sweden) and the “Austro-Hungarian”
group (Austria, Czechoslovakia, East Germany, and Hungary). The influence of the rela-
tional constraint can be seen in the “Southern” group (Greece, Ireland, Portugal, Spain,
and Yugoslavia) which in the relational case splits into two groups: “Balkan” and “Irish-
Iberian” group because of lack of the geographical connection between them.
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TABLE 3

LOCAL OPTIMIZATION

Dissimilarity: Pearson correlation coefficient
Criterion function: Ward’s
N. of groups = 6

ORDINARY CLUSTERING WITH
CLUSTERING RELATIONAL CONSTRAINT
initial

configuration Po Pmin Po Pmin
1 SA61' 2.8501 > 5.209 3.604
2 5.413 3.005 5.113 3.099

3 5.900 2.801 * 4,777 3.023°%
4 5.447 2.875 4,898 3.313
5 5.708 2.879 4.919  3.807
6 5.334 2.988 4.901 3.543
/4 5.950" 2.991 5.022 3.099
8 5.814 2.806 5.047 -3.138
9 4.737 2.801 * 4.815 3.940
10 5.255 2.806 5.212 3.654
1 5.550 2.961 5.279 3.090
12 5.522 3.026 £.245 3.31%
13 5.122 2.843 4.493 3.698
14 5.744 2.875 8,327 3.815
15 5.034 2.875 4.758 3.280
16 5.571 2.951 5.254 3.099
17 5.042 2.986 4,797 3.058
18 5.90): 2.801 * 5.054 3.031

19 5.024 2.801 * 5.135 3.023 *
20 5.614 2.801 * 5.8466 3.775
Ward’s h. c. 2.897 2.801 * 3.031  3.031

Conclusion

In the paper we have developed an optimization approach to clustering (with con-
straints). In this framework we have treated the problem of clustering with relational
constraints and for solving it we have proposed two methods which are extensions of the
existing techniques. The relational constraint in the example is the geographical neigh-
bourhood but other types of problems can be formalized as clustering problems with
relational constraint.

Appendix: The Proof of the Monotonicity Theorem

Let us first prove that the conditions (7) are sufficient: if the method fulfills the
conditions (7) then in each step of the procedure the monotonicity condition holds

dyip = dys 8
where duv = d(Cu, Cv).
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TABLE 4

CLUSTERINGS OF EUROPEAN COUNTRIES

Dissimilarity: Pearson correlation coefficient
Criterion function: Ward’s
N. of groups =6

ORDINARY CLUSTERINGS RELATIONAL CLUSTERINGS
local local
hierarchical optimization hierarchical optimization
BEL BEL BEL BEL
W.G. W.G. E+G. FRA
ITA ITA W.G. W.G.
NET NET ITA
SWI SHI LUX
FRA NET
ITA SWI
LUX FRA LUX U.K.
U.K. LUX NET
U.k. SWI
U.K. AUS
AUS CZE
BUL AUS E.G.
CZE CZE AUS HUN
E.G. E.G. CZE
HUN HUN HUN
DEN
FIN
DEN DEN DEN ICE
FIN FIN FIN NOR
FRA ICE ICE SWE
ICE NOR NOR
NOR SWE SWE
SWE BUL
POL
ALB ALB ROM
POL BUL BUL USS
ROM POL GRE
uss ROM POL
uss ROM ALB
UsS GRE
ALB YuG YUG
GRE GRE
IRE IRE
POR POR IRE IRE
SPA SPA POR POR
YUG YUG SPA SPA

2.897 2.801 3.031 2 N2
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Let C, be the farthest of the clusters C; and C; from the cluster C,, and let Cf/be the
nearest of them, i.e.,

d,=2d, and {ij}={p q} ©)
Then
|dki_dlr.j| =dtp_qu' (10)
Let us also define
ol e {“‘ Pl od: camdw 100 {al a5 (11)
0y, p=] a; 4=)

Then we can rewrite the formula (5):
Aipgy = iy = X1dip + 03 dig + Wdip — dig) + P,
= (o} + Py, + (02 — V)i + B,y (12)

In the case where nonmonotonicity results from the fusion of the cluster C, with the
cluster C; there must be at least one of the clusters C; and C; in the relation with the
cluster C,. Because of the fusion of the clusters C; and C;, at least one of the inequalities
dy; > djj or dy; > d;; holds. The last two inequalities can be combined in the inequality
max (dy;, dy;) = d;; or

thy, 2l (13)
From a > min (a, b) and the condition (7iii) it follows:
y + min (o, ;) + f = 1 (14)
and
o, +o, +p=1. (15)

To prove that from the conditions (7) the monotonicity (8) follows, we shall consider two
cases, which appear in the analysis of the formula (12):

1. o —y=0;
From the supposition a3 — y > 0 it follows (a; — 7)d,, = 0. Considering it in (12) we get
dl{pq] 2 {afl + ?)dkp + ﬁdpq’
and, further, from (13) and the relation «; > min (e, «,), we have
dypp = (&y + 7 + P,y = (v + min (ay, ;) + fd,,
which gives, combined with the condition (14), the monotonicity condition:
d*(ml = dpq'
2. oy —y <0;
From o, — y < 0 and (9) it follows
(@ — V)dig = (02 — V)i,
Considering the last inequality and «) + o, = a; + «, in (12) we get

dypg) = (g + )y, + Bd,,
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and further from the inequalities (7i) and (13)
dipg = (03 + 23 + ),

which gives combined with the condition (15) the monotonicity condition.

This completes the first part of the proof.

In the second part of the proof we have to prove that the conditions (7) are also
necessary: if the method is monotonic then the conditions (7) hold. We shall follow the
logically equivalent way: if the method does not fulfill the conditions (7) then the method
does not guarantee monotonic clusterings. In this case it is sufficient to find at least one
dissimilarity matrix D and relation R, for which the method is not monotonic.

We shall use the same notations as in the first part of the proof and let us suppose
(k, q) ¢ R. Without loss of generality of the proof we can suppose also

oy <o (16)
or
o) = min (o, ®;).
Then the nonmonotonicity condition dy,, < d,, can be written as follows:
(1 + Vi + (@2 — Y)dyg < (1 = PM. (17

To prove the second part of the theorem we have to show that the inequality (17) has
at least one solution (dy,, dy,), dy, = dy,, dy, = d,, as soon as the conditions (7) do not
hold. There are three cases to be considered:

L. o, +a; <0.
In this case we put d;, = d,, in the inequality (17) and we get
(o) + @) dyy < (1 — ) dp,

from where we obtain the solutions

1-8
dkp = qu > dpq max (1, al i az)

2. o, + a, > 0; ¥ + min (a,, a;) < 0.
Putting d, = d,, in the inequality (17) we get
(@ + My, < (1 = B+ 7 — ar)dy,.
The inequality (17) has at least the following solutions (d,,,, dy,):

qu o dw
and
1-f+y—a
dyy > dp mak PIi—v———— .
kp rq ( a,l +7 )
3. ay + o 2 0; 7 + min (a,, ;) > 0;

min (0:1 +a,y+ min (ab az)) + ﬁ <L

Considering which coefficient dominates in min in the last inequality, we split the analysis
in two cases:

3a. o; + o, =7 + min (e, o5);
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In this case the condition not (7iii) is the following
y+a;+p<1. (18)
Putting d,, = 0 in the inequality (17) we get:
oy + )y, < (1 — Pd,,.

Supposing a; + y = 0 it follows from (18) 1 — f > 0 and therefore each d,, > d,, solves
the inequality; otherwise from inequality (18) it follows 1 < (1 — f)/(«; + 7) and the in-
equality is solved by all d,, which satisfy the following condition:

1-p

dy, < dy, < gy dy,-
3b. oy + oy <y + min (&g, a5);
In this case the condition not (7iii) takes the form
o, +a,+p< 1. (19)

Let us set d;, = d,,. Considering it in (17) we get
(3 + ax)dy, < (1 — P)d,,-

The case a; + o, = 0 can be treated as in the case 3a; otherwise from (19) follows 1 <
(1 — B)/(x; + ;). Therefore the inequality is solved by all d,, which fulfill the following
condition:

=

i e e B
b P la+a,

pa*

We exhausted all possible cases and in each case we found the solutions of the non-
monotonicity inequality (17). Therefore also the second part of the theorem holds. This
completes the proof.
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