Combining TEX and PostScript

Vladimir Batagelj

University of Ljubljana, Department of Mathematics
Jadranska 19, 61111 Ljubljana

Slovenia

WWW: http://www.uni-1j.si/"vlado/vlado.html

Abstract

PostScript is becoming a de facto standard as a device independent page descrip-
tion language. By embedding PostScript elements in TEX we can extend the use

of TEX to new areas of application.

In the first part of the paper we give some general information about Post-
Script and its features. In the rest of the paper we present some of our own
experiences and solutions in combining TEX and PostScript:

e dictionaries, prolog files and how to save a lot of space with PostScript
figures produced in CorelDRAW, Mathematica, .. .;

e writing TEX-PostScript macros, case: drawing graphs (combinatorics) in
TEX; PostScript error handling mechanism, an application in function graph

drawing macro.

Version: March 1995 — updated version of the paper presented at EuroTEX 94,

Sobieszewo, Poland, 26-30. Sep 1994.

Key words: PostScript, TEX, inclusion of graphics, dictionaries, macros, error

handling.
Math. Subj. Class. (1991):

Introduction

Pictures, figures and color are often important el-
ements of a document. They are foreign concepts
to TEX which is essentially based on arranging and
glueing of boxes.

In his A Survey of TEX and Graphics [6, p. 275-
276] S. Rahtz discusses six approaches for producing
graphics in TEX. The first five are based on the TEX
system and therefore preserve device independence,
but they are inflexible in those cases where a picture
has to be transformed (scaled, rotated).

The sixth approach is based on the use of the
TEX command \special with which we can include
in the DVI file commands for a selected output de-
vice driver. By doing this we lose device indepen-
dence; but, in the case of PostScript, and consider-
ing its graphical power and the availability of print-
ers and previewers, this little adultery seems worth-
while. In this paper we shall take a closer look at
this approach.

In the first part of the paper we give a short
introduction to basic ideas and capabilities of Post-

PREPRINT: 1994 EuroTEX Meeting

68U 15, 68-01, 68N 15

Script, thus making the paper self-contained. In the
rest of the paper we present some of our own expe-
riences and solutions on PCs in combining TEX and
PostScript.

PostScript

What is PostScript? PostScript is a graphics
programming language for describing, in a device-
independent manner, text and other graphical ob-
jects and how they are placed on the page or screen.

It was developed in 1985 by Adobe Systems in
a joint project with Apple Computer on the devel-
opment of the Apple LaserWriter. This version is
known as PostScript Level 1.

Although PostScript was initially designed as
an interface between picture production and text
formatting programs on one side, and printers on
the other side, it evolved into a general interface
language between (application) programs and dis-
play devices. Its main extensions, by different users,
were:

20 Mar 1995 12:23 1001



Vladimir Batagelj

e introduction of colors, improvements of pattern
filling and halftones;

e support for composite fonts (Japanese and
other Eastern alphabets);

e representation and communication of informa-
tion in some computer systems — Display Post-
Script (NeXT, Silicon Graphics).

At the first PostScript Conference in 1990, Post-
Script Level 2 was announced which integrated these
features into a new version of the PostScript lan-
guage.

PostScript programs and their execution. A
PostScript program is a text (ASCII) file. Usually it
is produced by some other graphics or text format-
ting program (Word, Word Perfect, Core]DRAW
Mathematica, . ..), but it can be also prepared and
maintained by a user and any text editor.

To obtain from a document described in TEX
on file.tex its PostScript description on file.ps, we
first produce, as usual, the corresponding DVI file
file.dvi and translate it using some DVI-to-PS pro-
gram (DVIPS, DVI2PS, DVITOPS, ...) into Post-
Script.

The simplest way to display the results of a
PostScript program on file. ps is to send it to a Post-
Script printer (copy file.ps 1lpt: or print file.ps).

PostScript programs are either interpreted by
an interpreter built into a display device (i.e., laser
printer) or by a software interpreter in the user’s
computer. The most widespread software Post-
Script interpreter is Ghostscript (Aladdin Enter-
prises and Free Software Foundation). Ghostscript
3.12 (September 1994) implements PostScript Level
2. Ghostscript enables us to preview PostScript doc-
uments on the screen and to print them on several
nonPostScript printers.

Basic PostScript programming

Syntax. PostScript program starts with

%1PS

followed by the description of page(s). Post-
Script recognizes, besides a printable subset of the
ASCII character set, also characters space, tab and
newline (CR or LF or CR LF).

Some PostScript printers use CTRL-D as an
indicator of end-of-job. For this reason some ap-
plication programs insert CTRL-D at the beginning
of PostScript files, which is often a source of prob-
lems when we are trying to include such files in our
documents.

The content of the line from % till the end of
line is a comment.

1002 20 Mar 1995 12:23

PostScript is a stack-based language and uses a
postfix (reverse Polish) notation for commands

p1 P2 -..pn cmd

The interpreter puts the arguments pi1, pa, ..., pn
on the stack and leaves the results of command emd
on it.

PostScript [1, 12, 2, 3, 13] is a powerful pro-
gramming language which besides general program-
ming elements: data types (integer, real, boolean,
string, array, dictionary, file), control statements
(if, ifelse, loop, for, exit, exec), arithmetic
operations and functions (add, sub, mul, div,
idiv, mod, abs, neg, ceiling, floor, round,
truncate, sqrt, exp, ln, log, sin, cos, atan,
rand, srand, rrand), operations and functions
on other data types, conversion operators, stack
commands (dup, exch, pop, copy, roll), environ-
ment commands(save, restore, gsave, grestore);
contains also many specific graphics commands:
coordinate system changing commands (rotate,
scale, translate, transform), path drawing
commands (moveto, rmoveto, lineto, rlineto,
curveto, arc, charpath, newpath, closepath), at-
tribute setting commands (setgray, setcmykcolor,
setrgbcolor, setlinewidth), font commands
(findfont, scalefont, setfont), displaying com-
mands (clip, stroke, fill, show, showpage).

PostScript’s coordinate system. PostScript’s
own coordinate system is based on units called
points (72 pt = 1 inch). It has the origin (0,0) in
the lower left corner (letter = 8.5 x 11 inch = 612
X 792 pt; Ad =21 x 29.7 cm = 595 x 842 pt). The
content of the page is composed of page elements —
parts of pictures or text. Each page element is de-
termined by a set of paths (lines, arcs, curves) and
their properties which are realized after the appli-
cation of some displaying command. Characters are
also treated as pictures, but supported by a special
set of very efficient commands.
Example: Simple program.
%!'PS
/Helvetica findfont 100 scalefont setfont
40 0 moveto
30 rotate
(TeX) false charpath
gsave

0.8 setgray

£ill
grestore
4 setlinewidth
stroke
showpage

PREPRINT: 1994 EuroTEX Meeting



The first line of the program declares that this
is a PostScript program. In the second line we set
the Helvetica font at size 100pt as the current font.
Then we move to the point (40,0) and rotate the
coordinate system through 30 degrees. In the next
line we transform the text TeX into its outline. The
command gsave saves the current graphic environ-
ment. We fill the interior of the outline with 0.8 gray
(1 is white, 0 is black) and restore the graphical en-
vironment. Now we set the line width to 4pt and
draw the outline. It has to be emphasized that path
drawing and attribute setting commands create only
descriptions of paths which are not realized on the
page until some displaying command is issued. The
command showpage at the end of the page requires
that the interpreter display the page.

Dictionaries. An important concept in Post-
Script is the notion of a dictionary. It consists of
(key, value) pairs, which are in some sense the Post-
Script equivalent of the concept of a variable. The
value is stored under the name /key into the cur-
rent dictionary by the command

/key value def

There is a stack of active dictionaries which deter-
mine the current context. There are always two
permanent dictionaries systemdict and userdict
(and globaldict), but the user can introduce his
own dictionaries.

A new dictionary of size n (number of entries)
is created by the command

n dict

and saved in the current dictionary under the name
/D by the command

/D n dict def

It is opened for use by the command
D begin

and closed by the matching command

end

PREPRINT: 1994 EuroTEX Meeting

Combining TEX and PostScript

Although dictionaries allow us to use variables
in a way similar to normal programming languages,
this is not in the ‘spirit’ of PostScript — try to do
the job on the stack.

Besides data, we can store in a dictionary also
procedures. Dictionaries are usually used to prepare
libraries for special tasks.

User defined commands. User defined com-
mands (procedures) are, in PostScript, a special
kind of array enclosed in braces { } — executable
arrays. Usually we define a procedure proc by stor-
ing its body { ¢mds } into a current dictionary

/proc { ecmds } def

The following two commands define the usual units
/inch { 72 mul } def

/mm { 2.835 mul } def

The command 11 mm puts on the stack values 11
and 2.835, multiply them and returns their product
(11 mm expressed in pts) on the stack.

Example: Drawing graphs. This example
demonstrates the use of a dictionary for the simple
task of drawing (combinatorial) graphs. The dictio-
nary Graph contains two quantities:

pr — radius of a point;

pc — color of the interior of a point;

and four commands

r radius — defines/changes pr;
¢ pointcolor — defines/changes pc;
z y p — draws a point at (z,y);
Z1 Y1 T2 yo 1 — draws a line connecting (z1,y;) and
(22, 92)-
The p and 1 commands in the description of the
graph were obtained by the Mathematica based
system Vega [14]. The resulting graph is presented
in Figure 1. Note that all lines are drawn before
points.
%'PS
%%BoundingBox: 30 30 370 370
/Graph 6 dict def
Graph begin

/radius {/pr exch def} def

/pointcolor {/pc exch def} def

/p { pr 0 360 arc

gsave pc setgray fill grestore

stroke } def

/1 { moveto lineto stroke } def
end
Graph begin

0.7 setgray 2 setlinewidth

249 360 71 101 1 249 360 151 40 1

249 360 249 40 1 249 360 329 101 1

249 360 360 200 1

1561 360 71 101 1 151 360 151 40 1

20 Mar 1995 12:23 -1003



