Corrected network elements importance measures

Overlap weight

Corrected overlap weight

Vladimir Batagelj

IMFM Ljubljana and IAM UP Koper

1260. Sredin seminar
Ljubljana, 27. January 2016

iffic Outline

Corrected
measures
V. Batagelj

Introduction
Overlap
weight
Corrected
overlap weight
Clustering coefficient

Corrected clustering coefficient

Widespread index

References

1 Introduction
2 Overlap weight
3 Corrected overlap weight
4 Clustering coefficient
5 Corrected clustering coefficient
(6) Widespread index

7 References

Vladimir Batagelj:

vladimir.batagelj@fmf.uni-lj.si

Current version of slides (February 1, 2016, 05 : 33): http://vlado.fmf.uni-lj.si/seminar/27jan16/sreda1260.pdf

Network element importance measures

To identify important / interesting elements (nodes, links) in a network we often try to express our intuition about important / interesting element using an appropriate measure (index, weight) following the scheme
larger is the measure value of an element, more important / interesting is this element

Examples: degrees, closeness, betweenness, hubs and authorities, clustering coefficient, etc.

Too often, in analysis of networks, researchers uncritically pick some measure from the literature.

Network element importance measures

Corrected
measures
V. Batagelj

We discuss two well known network measures: the overlap weight of an edge (Onnela et al., 2007) and the clustering coefficient of a node (Holland and Leinhardt, 1971; Watts and Strogatz, 1998) .

For both of them it turns out that they are not very useful for data analytic task to identify important elements of a given network. The reason for this is that they attain the largest values on "complete" subgraphs of relatively small size - they are more probable to appear in a network than that of larger size.

We show how their definitions can be corrected in such a way that they give the expected results.

imfi Overlap weight - triangles

Corrected measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

A direct measure of the overlap of an edge $e=(u: v) \in \mathcal{E}$ in an undirected simple graph $\mathbf{G}=(\mathcal{V}, \mathcal{E})$ is the number of their common neighbors (see figure). It is equal to $t(e)$ - the number of triangles (cycles of length 3) to which the edge e belongs. There are two problems with this measure:

- it is not normalized (bounded to $[0,1]$);
- it does not consider the 'potentiality' of nodes u and v - there are
$\min (\operatorname{deg}(u), \operatorname{deg}(v))-1-t(e)$
nodes in the smaller set of neighbors that are not in the
 other set of neighbors.

ifff Overlap weight - definition

Corrected
measures
V. Batagelj

Introduction
Overlap weight

Corrected

Two simple normalizations are:

$$
\frac{t(e)}{n-2} \quad \text { or } \quad \frac{t(e)}{t_{\max }}
$$

where $n=|\mathcal{V}|$ is the number of nodes, and $t_{\max }=\max _{e \in \mathcal{E}} t(e)$ is the maximum number of triangles on an edge in the graph \mathbf{G}.

The (topological) overlap weight of an edge $e=(u: v) \in \mathcal{E}$ considers also the degrees of edge's end-nodes and is defined as

$$
o(e)=\frac{t(e)}{(\operatorname{deg}(u)-1)+(\operatorname{deg}(v)-1)-t(e)}
$$

In the case $\operatorname{deg}(u)=\operatorname{deg}(v)=1$ we set $o(e)=0$. It somehow resolves both problems.

(iffif Overlap weight - comments

Corrected
measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

The overlap weight is essentially a Jaccard similarity index

$$
J(X, Y)=\frac{|X \cap Y|}{|X \cup Y|}
$$

for $X=N(u) \backslash\{v\}$ and $Y=N(v) \backslash\{u\}$ where $N(z)$ is the set of neighbors of a node z. In this case we have $|X \cap Y|=t(e)$ and

$$
|X \cup Y|=|X|+|Y|-|X \cap Y|=(\operatorname{deg}(u)-1)+(\operatorname{deg}(v)-1)-t(e) .
$$

Note also that $h(X, Y)=1-J(X, Y)=\frac{|X \oplus Y|}{|X \cup Y|}$ is the normalized Hamming distance. The operation \oplus denotes the symmetric difference $X \oplus Y=(X \cup Y) \backslash(X \cap Y)$.

ifffi Overlap weight - comments

Corrected
measures
V. Batagelj

Another normalized overlap measure is the overlap index

$$
O(X, Y)=\frac{|X \cap Y|}{\max (|X|,|Y|)} .
$$

Both measures J and O, applied to networks, have some nice properties. For example: a pair of nodes u and v are structurally equivalent iff $J(X, Y)=O(X, Y)=1$.

Therefore the overlap weight measures a substitutiability of one end-node by the other.

ifffi Overlap weight - comments

Corrected measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Widespread index

References

Introducing two auxiliary quantities

$$
m(e)=\min (\operatorname{deg}(u), \operatorname{deg}(v))-1 \quad \text { and } \quad M(e)=\max (\operatorname{deg}(u), \operatorname{deg}(v))-1
$$

we can rewrite the definiton of the overlap weight

$$
o(e)=\frac{t(e)}{m(e)+M(e)-t(e)}, \quad M(e)>0
$$

and if $M(e)=0$ then $o(e)=0$.

(ifff Overlap weight - properties

Corrected
measures
V. Batagelj

Introduction

Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Widespread index

For every edge $e \in \mathcal{E}$ it holds $0 \leq t(e) \leq m(e) \leq M(e)$.
Therefore

$$
m(e)+M(e)-t(e) \geq t(e)+t(e)-t(e)=t(e)
$$

showing that $0 \leq o(e) \leq 1$.
The value $o(e)=1$ is attained exactly in the case when $M(e)=t(e)$; and the value $o(e)=0$ exactly when $t(e)=0$.

ifffi US Airports links 1997

Corrected
measures
V. Batagelj

Let us apply the overlap weight to the network of US Airports 1997 (see the figure). It consists of 332 airports and 2126 edges among them. There is an edge linking a pair of airports iff in the year 1997 there was a flight company providing flights between those two airports.

The size of a circle representing an airport in the figure is proportional to its degree - the number of airports linked to it. The airports with the largest degree are:
$\operatorname{deg}($ Chicago O'hare IntI $)=139$, $\operatorname{deg}($ Dallas/Fort Worth IntI) $=118$, $\operatorname{deg}($ The William B Hartsfield Atlanta) $=101$, $\operatorname{deg}($ Lambert-St Louis IntI $)=94$, $\operatorname{deg}($ Pittsburgh $\operatorname{IntII})=94$, etc.

ifffi US Airports links 1997

Corrected measures
V. Batagelj

Introduction
Overlap weight

Corrected
overlap weight
Clustering coefficient

Corrected clustering coefficient

Widespread index

References

iffif US Airports links 1997

Corrected measures V. Batagelj

For the overlap weight the edge cut at level 0.8 (a subnetwork of all edges with overlap weight at least 0.8) is presented in the figure. It consists of two triangles, a 2-path, and 17 separate edges.

A tetrahedron (Kwigillingok, Kongiganak,Tuntutuliak, Bethel), see the figure and details in cut-out, gives the first triangle in the figure of cuts - attached with the node Bethel to the rest of network.

From this example we see that in real-life networks edges with the largest overlap weight tend to be edges with relatively small degrees in their end-nodes $(o(e)=1$ implies $\operatorname{deg}(u)=\operatorname{deg}(v)=t(e)+1)$. Because of this the overlap weight is not very useful for data analytic tasks in searching for important elements of a given network. We would like to emphasize here that there are many applications in which overlap weight proves to be useful and appropriate; we only question its appropriateness for determining the most overlaped edges. We will try to improve the overlap weight definition to better suit the data analytic goals.

Edges with the largest overlap

cut at 0.8

Corrected measures
V. Batagelj

Introduction
Overlap weight

Corrected
overlap weight
Clustering coefficient

Corrected clustering coefficient

Widespread index

References

imfir Zoom in

Corrected
measures
V. Batagelj

```
Introduction
```

Overlap
weight
Corrected
overlap weight
Clustering
coefficient
Corrected
clustering
coefficient
Widespread
index
References

iffif Zoom in

Corrected
measures
V. Batagelj

```
Introduction
```

Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

iffif Corrected overlap weight

Corrected
measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

We introduce a quantity

$$
\mu=\max _{e \in \mathcal{E}} t(e)
$$

and define a corrected overlap weight as

$$
o^{\prime}(e)=\frac{t(e)}{\mu+M(e)-t(e)}
$$

By the definiton of μ for every $e \in \mathcal{E}$ it holds $t(e) \leq \mu$. Since $M(e)-t(e) \geq 0$ also $\mu+M(e)-t(e) \geq \mu$ and therefore $0 \leq o^{\prime}(e) \leq 1 . o^{\prime}(e)=0$ exactly when $t(e)=0$, and $o^{\prime}(e)=1$ exactly when $\mu=M(e)=t(e)$.

US Airports links with the corrected overlap weight

Corrected
measures
V. Batagelj

For the US Airports 1997 network we get $\mu=80$. For the corrected overlap weight the edge cut at level 0.5 is presented in the figure. Six links with the largest triangular weights are given in the table:

u	v	$t(e)$	$d(u)$	$d(v)$	$o^{\prime}(e)$
The WB Hartsfield Atlan	Charlotte/Douglas	76	101	87	0.73077
The WB Hartsfield Atlan	Dallas/Fort Worth	73	101	118	0.58871
Chicago O'hare	Pittsburgh	80	139	94	0.57971
Chicago O'hare	Lambert-St Louis	80	139	94	0.57971
Dallas/Fort Worth	Chicago O'hare	78	118	139	0.55714
The WB Hartsfield Atlan	Chicago O'hare	77	101	139	0.54610

US Airports links

with the largest corrected overlap weight, cut at 0.5

Corrected measures
V. Batagelj

Introduction
Overlap weight

Corrected

 overlap weightClustering coefficient

Corrected clustering coefficient

Widespread index

References

$\mu=80$

US Airports links with the largest corrected overlap weight

Corrected
measures
V. Batagelj

In the following figure all the neighbors of end-nodes WB Hartsfield Atlanta and Charlotte/Douglas Intl of the link with the largest corrected overlap weight value are presented. They have 76 common (triangular) neighbors. The node WB Hartsfield Atlanta has 11 and the node Charlotte/Douglas Intl has 25 additional neighbors. Note that (see the previous table) that there are some links with higher triangular weight, but also with much higher number of additional neighbors - therefore with smaller corrected overlap weights.

US Airports links $o^{\prime}($ WB Hartsfield Atlanta, Charlotte/Douglas IntI $)=0.7308$

Corrected
measures
V. Batagelj
Introduction
Overlap
weight
Corrected
overlap weight
Clustering
coefficient
Corrected
clustering
coefficient
Widespread
index
References

$34 f$
 Comparisons

Corrected
measures
V. Batagelj

In the following figure the set $\left\{\left(o(e), o^{\prime}(e)\right): e \in \mathcal{E}\right\}$ is displayed for the US Airports 1997 network. For most edges it holds $o^{\prime}(e) \leq o^{\prime}(e)$. It is easy to see that $o(e)<o^{\prime}(e) \Leftrightarrow \mu<m(e)$.
In the second figure the sets $\{(m(e), o(e)): e \in \mathcal{E}\}$ and $\left\{\left(m(e), o^{\prime}(e)\right): e \in \mathcal{E}\right\}$ are displayed for the US Airports 1997 network. With increasing the $m(e)$ the corresponding overlap weight $o(e)$ is decreasing; and the corresponding corrected overlap weight $o^{\prime}(e)$ is also increasing.
We can observe similar tendencies if we compare both weights with respect to the number of triangles $t(e)$ (see the third figure).

ifffic Comparison

Corrected
measures
V. Batagelj

Introduction

Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Widespread index

Overlap weights

ifffi Comparison - minDeg(e)

Corrected
measures
V. Batagelj

Introduction

Overlap

weight
Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Widespread index

References

ifff Comparison - \# of triangles

Corrected
measures
V. Batagelj

Introduction

Overlap

 weightCorrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Widespread index

Overlap weights

Overlap weights

$2 \pi f$
 Clustering coefficient

Corrected measures V. Batagelj

For a node $u \in \mathcal{V}$ in an undirected simple graph $\mathbf{G}=(\mathcal{V}, \mathcal{E})$ its (local) clustering coefficient is measuring a local density in the node u and is defined as a proportion of the number of existing edges between u 's neighbors to the number of all possible edges between u 's neighbors

$$
c c(u)=\frac{|\mathcal{E}(N(u))|}{\left|\mathcal{E}\left(K_{\operatorname{deg}(u)}\right)\right|}=\frac{2 \cdot E(u)}{\operatorname{deg}(u) \cdot(\operatorname{deg}(u)-1)}, \quad \operatorname{deg}(u)>1
$$

where $N(u)$ is the set of neighbors of node u and $E(u)=|\mathcal{E}(N(u))|$. If $\operatorname{deg}(u) \leq 1$ then $c c(u)=0$.

It is easy to see that $E(u)=\frac{1}{2} \sum_{e \in S(u)} t(e)$ where $S(u)$ is the star in node u.

It holds $0 \leq c c(u) \leq 1 . c c(u)=1$ exactly when $\mathcal{E}(N(u))$ is isomorphic to $K_{\operatorname{deg}(u)}$ - a complete graph on $\operatorname{deg}(u)$ nodes. Therefore it seems that the clustering coefficient could be used to identify nodes with the densest neighborhoods.

ifffi US Airports links with clustering coefficient $=1$

Corrected
measures
V. Batagelj

Introduction
Overlap
weight
Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Let us apply also the clustering coefficient to the US Airports 1997 network.

rank	deg	airport	rank	deg	airport
1	7	Lehigh Valley Intll	8	4	Gunnison County
2	5	Evansville Regional	9	4	Aspen-Pitkin Co/Sardy Field
3	5	Stewart Int'I	10	4	Hector IntlI
4	5	Rio Grande Valley Intl	11	4	Burlington Regional
5	5	Tallahassee Regional	12	4	Rafael Hernandez
6	4	Myrtle Beach Intl	13	4	Wilkes-Barre/Scranton Intl
7	4	Bishop Intll	14	4	Toledo Express

In the table airports with the clustering coefficient equal to 1 and the degree at least 4 are listed. There are 28 additional such airports with degree 3, and 38 with degree 2.

Again we see that the clustering coefficient attains its largest value in nodes with relatively small degree. The probability that we get a complete subgraph on $N(u)$ is decreasing fast with increasing of $\operatorname{deg}(u)$.

ifffi Corrected clustering coefficient

Corrected measures
V. Batagelj

To get a corrected version of the clustering coefficient we proposed in Pajek [?] to replace $\operatorname{deg}(u)$ in the denominator with $\Delta=\max _{v \in \mathcal{V}} \operatorname{deg}(v)$. In this paper we propose another solution - we replace $\operatorname{deg}(u)-1$ with μ :

$$
c c^{\prime}(u)=\frac{2 \cdot E(u)}{\mu \cdot \operatorname{deg}(u)}, \quad \operatorname{deg}(u)>0
$$

Note that, if $\Delta>0$ then $\mu<\Delta$.
To show that $0 \leq c c^{\prime}(u) \leq 1$ we have to consider two cases:
a. $\operatorname{deg}(u) \geq \mu$: then for $v \in N(u)$ we have $\operatorname{deg}_{N(u)}(v) \leq \mu$ and therefore

$$
2 \cdot E(u)=\sum_{v \in N(u)} \operatorname{deg}_{N(u)}(v) \leq \sum_{v \in N(u)} \mu=\mu \cdot \operatorname{deg}(u)
$$

b. $\operatorname{deg}(u)<\mu$: then $\operatorname{deg}(u)-1 \leq \mu$ and therefore

$$
2 \cdot E(u) \leq \operatorname{deg}(u) \cdot(\operatorname{deg}(u)-1) \leq \mu \cdot \operatorname{deg}(u)
$$

The value $c c^{\prime}(u)=1$ is attained in the case a on a μ-core, and in the case b on $K_{\mu+1}$.

US Airports 1997 nodes

 with the largest corrected clustering coefficientCorrected
measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Rank	Value	Id
1	0.3739	Cleveland-Hopkins Intl
2	0.3700	General Edward Lawrence Logan
3	0.3688	Orlando Intl
4	0.3595	Tampa Int\|
5	0.3488	Cincinnati/Northern Kentucky I
6	0.3457	Detroit Metropolitan Wayne Cou
7	0.3455	Newark Intl
8	0.3429	Baltimore-Washington Int\|
9	0.3415	Miami IntI
10	0.3405	Washington National
11	0.3379	Nashville IntII
12	0.3359	John F Kennedy Int\|
13	0.3347	Philadelphia Intl
14	0.3335	Indianapolis Intl
15	0.3335	La Guardia

Cleveland-Hopkins Intl neighbors

Corrected

measures

V. Batagelj

Introduction
Overlap
weight
Corrected
overlap weight
Clustering coefficient

Corrected clustering coefficient

Widespread index

References

imf
 Comparison

Corrected
measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Clustering coefficients

In the left figure the set $\left\{\left(c c(e), c c^{\prime}(e)\right): e \in \mathcal{E}\right\}$ is displayed for the US Airports 1997 network. The correlation between both coefficients is very small. An important observation is that edges with the largest value of the clustering coefficient have relatively small values of the corrected clustering coefficient. In the right figure we also see that the number of edges in a node's neighborhood is almost functionally dependent on its degree.

iffff Comparison - degrees

Corrected measures
V. Batagelj

Introduction

Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

From the left figure we see that the clustering coefficient is decreasing with the increasing degree. Nodes with large degree have small values of clustering coefficient. The values of corrected clustering coefficient are large for nodes of large degree.

Widespread index

Motivation

Corrected
measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Widespread index

References

SocNet: January 12, 2016
I need to have a measure of how widespread is the distribution of a node attribute in a network. Let me explain:

My nodes have a textual attribute, let's say "preferred flavor for ice cream".

I would like to know to what extent the flavor "raspberry" is a value which is evenly distributed in the network, or to the contrary, just found in one community. A low value would mean that only nodes from a subregion of the network have this taste, a higher value would show an even distribution of the value across the whole network. I imagine that a difficulty is to account for the frequency of the attribute: if many nodes of the network have "raspberry" for the value of the attribute, it will tend to make this value distributed more widely.

Any help or pointer on this would be very much appreciated!
Thank you, Clement Levallois

Widespread index

First attempt

Corrected
measures
V. Batagelj

Let us try to define a widespread index and show how it can be computed in Pajek.
Let S be a selected subset of set of nodes V in a simple (no parallel links) network $N=(V, L)$. With $N(S)$ we denote the set of neighbors of the set S :

$$
N(S)=\{u \in V: \exists v \in S:(v, u) \in L\}
$$

and with $N^{+}(S)=S \cup N(S)$. With $n=|V|$ we denote the number of nodes.
A simple widespread index is

$$
W_{1}(S)=\frac{\left|N^{+}(S)\right|}{n} .
$$

Widespread index

Properties

Corrected measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient index

We have:

- $0 \leq W_{1}(S) \leq 1$.
- $W_{1}(S)=1$ iff S is a dominating set (Wikipedia). D is a dominating set of a network $N=(V, L)$ iff $N^{+}(D)=V$.
- if $S_{1} \subset S_{2}$ then $N^{+}\left(S_{1}\right) \subseteq N^{+}\left(S_{2}\right)$.
- $\left|N^{+}\left(S_{1}\right)\right| \leq\left|N^{+}\left(S_{2}\right)\right|$ iff $W_{1}\left(S_{1}\right) \leq W_{1}\left(S_{2}\right)$.

Related to dominating sets is a domination number $\gamma(N)$

$$
\gamma(N)=\min _{D} \text { is a dominating set of }|D|
$$

for which it holds $n \geq \gamma(N) \geq\lceil n /(1+\Delta)\rceil \geq 1$, where Δ is the largest (out)degree in N.

Widespread index

Properties

Corrected measures
V. Batagelj

Even better lower bound is $\gamma(N) \geq k$, where k is the smallest number such that

$$
\sum_{i=1}^{k}\left(1+d_{i}\right) \geq n
$$

where $\left(d_{i}\right)$ is a sequence of outdegrees ordered in decreasing order.
Note: In network with non-empty set of arcs the nodes with zero indegree are all in any dominant set. Let D_{0} be the set of all such nodes. Then we get a better lower bound for $\gamma-$ it is $\left|D_{0}\right|+k^{\prime}$, where k^{\prime} is the smallest number such that

$$
\sum_{i=1}^{k^{\prime}}\left(1+d_{i}\right) \geq n-\left|N^{+}\left(D_{0}\right)\right|
$$

Since $V \backslash D_{0}$ can have zero degree nodes again we iterate the process. The final dis are computed in the final $V \backslash D_{0}$.

Widespread index

Dominant sets

Corrected
measures
V. Batagelj

The problem with the definition of $W_{1}(S)$ is that it doesn't consider the size of the set S. Let D^{*} be a minimal dominating set. Then an alternative definition of index could be

$$
W^{*}(S)=\frac{|N(S) \backslash S|}{\left|V \backslash D^{*}\right|}=\frac{|N(S) \backslash S|}{n-\gamma} .
$$

It is easy to see that

- $0 \leq W^{*}(S) \leq 1$.
- in a weakly connected network $N: W^{*}(S)=1$ iff S is a minimal dominating set.
- if $\left|N^{+}\left(S_{1}\right)\right|=\left|N^{+}\left(S_{2}\right)\right|$ and $\left|S_{1}\right|<\left|S_{2}\right|$ then $W^{*}(S 1)>W^{*}(S 2)$.

Widespread index

Second attempt

Corrected measures
V. Batagelj

Unfortunately the problem of determining the domination number $\gamma(N)$ is NP-complete - there is no efficient algorithm to compute W^{*}.

To get an efficiently computable index we could replace γ with 1 (it always holds $\gamma \geq 1$); or, even better, with k :

$$
W_{2}(S)=\frac{|N(S) \backslash S|}{n-k}
$$

It holds:

- $W^{*}(S) \geq W_{2}(S)$.
- $0 \leq W_{2}(S) \leq 1$.
- $W_{2}(S)=1$ iff S is a minimal dominant and independent (Wikipedia) set with k nodes.
- $W^{*}\left(S_{1}\right)>W^{*}\left(S_{2}\right)$ iff $W_{2}\left(S_{1}\right)>W_{2}\left(S_{2}\right)$.
- if $\left|N^{+}\left(S_{1}\right)\right|=\left|N^{+}\left(S_{2}\right)\right|$ and $\left|S_{1}\right|<\left|S_{2}\right|$ then $W_{2}\left(S_{1}\right)>W_{2}\left(S_{2}\right)$.

Conclusions

Corrected
measures
V. Batagelj

Introduction

Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Widespread index

References

In the corrected measures we can replace μ with Δ. Its advantage is that it can be easier computed; but the corresponding measure is less 'sensitive'.

References I

Corrected
measures
V. Batagelj

R P. W. Holland and S. Leinhardt (1971). "Transitivity in structural models of small groups". Comparative Group Studies 2: 107-124.

Onnela, J.P., Saramaki, J., Hyvonen, J., Szabo, G., Lazer, D., Kaski, K., Kertesz, J., Barabasi, A.L.: Structure and tie strengths in mobile communication networks. Proceedings of the National Academy of Sciences 104(18), 7332 (2007) paper
D. J. Watts and Steven Strogatz (June 1998). "Collective dynamics of 'small-world' networks". Nature 393 (6684): 440-442.
Wikipedia: Clustering coefficient
Wikipedia: Overlap coefficient

iffif Acknowledgments

Corrected
measures
V. Batagelj

This work was supported in part by the Slovenian Research Agency (research program P1-0294 and research projects J5-5537 and J1-5433).

The attendance on the CMStatistics (ERCIM) 2015 Conference was partially supported by the COST Action IC1408-CRoNoS.

