
Data Processing in The Cloud
– JS Approach

1259. sredin seminar / Ljubljana 20. jan. 2016

Uroš Mesojedec

Faculty of Information Studies in Novo mesto

uros.mesojedec@fis.unm.si

uros@mesojedec.net

#2

Introduction

o Cloud computing is next logical step to utility computing

o „Cloudification“

o Existing processes

oAdapt / Rewrite

o New processes

oBest practices, future proofing

o Cloud Rank

o Set of tests and measurements for cloudification potential of process

o (including existing software)

#3

Cloud

o Two rules of thumb:

o If you have to buy new hardware

o If you are dependent on the client

o … then this is not real cloud

o Cloud solution:

o Use and integrate existing services for consumption on any
device

#4

Cloud == Web platform

o IPv4 → IPv6

o HTTP → HTTPS

o (X)HTML → HTML5

o Server → Services

o Client → Devices („Things“)

o Network → Utility

#5

Web as Development Platform

o Web solved cross-platform

o Web should be the platform developers invest first / most

o … because it is the best (easiest) way to great solutions

o Ecosystem

o Cloud Services (AWS, GCP, Azure…)

o Rich clients (evergreen browsers, smart mobile devices…)

o Expanding environment (Internet of Things)

o Developers

o Server code

o Client code

#6

JavaScript (JS) is everywhere

o It is underlying base for the Web (platform)

o Some JS manifestations

o important part of HTML5

o JSON

o Libraries ecosystem (maybe the biggest!)

o Databases (MongoDB)

o Server (Node.js)

o Platform (asm.js)

#7

Rule of Least Power

o The rule of least power in programming:
o Design principle that suggests choosing the least powerful [computer]

language suitable for a given purpose.

o Alternatively:
o Given a choice among computer languages, the less procedural, more

descriptive the language one chooses, the more one can do with the
data stored in that language.

source: http://www.w3.org/2001/tag/doc/leastPower.html

o Atwood‘s „Law“, A corollary to the Principle of Least Power:
o Any application that can be written in JavaScript, will eventually be

written in JavaScript.
Jeff Atwood, 2007: http://blog.codinghorror.com/

http://www.w3.org/2001/tag/doc/leastPower.html
http://blog.codinghorror.com/

#8

JavaScript

o JavaScript (JS)
o Prototype-based with first-class functions
o Multi-paradigm language, liberal at programming styles

(object-oriented || imperative || functional)

o JS !== Java.
o Unrelated with very different semantics
o Some naming, syntactic, and standard library similarities

(marketing-driven at the time)
o JS syntax derived from C, semantics and design influenced by Self and

Scheme

o JS is the only language for web browsers

o Speed of JS engines → JS is a feasible compilation target

#9

JavaScript Milestones

o 1995 – Brendan Eich (Netscape) – Navigator LiveScript, rebranded “JavaScript“

o 1996 – Microsoft connects Server (IIS) and Client (IE) with “JScript“

o 1997 – ECMAScript standard

o 1998 – Microsoft XMLHTTP for Outlook Web Access → AJAX is born

o 2001 – Douglas Crockford (State Software) – JSON

o 2006 – John Resig – jQuery

o 2008 – Perf. breakthrough – Google V8, Apple Nitro, Mozilla TraceMonkey

o 2009 – Ryan Dahl (Joyent) – Google V8 + event loop + I/O → Node.js is born

o 2011 – Nitobi PhoneGap, Adobe acquisition → Apache Cordova with cloud compiler

o 2012 – Microsoft TypeScript, later adopted by Google‘s Angular 2

o 2013 – Jordan Walke (Facebook) – React

o 2013 – Mozilla Asm.js

o 2015 – Brendan Eich announces WebAssembly

#10

Quick intermission – Apache Cordova

o Cloud compiler

o PhoneGap Build
https://build.phonegap.com/

o Compiler as a service (no investment in devices and dev kits)

o JS as completely viable cross-platform mobile development
language

source: https://build.phonegap.com/

https://build.phonegap.com/
https://build.phonegap.com/

#11

JSON (JavaScript Object Notation)

o Object serialization

o Lightweight, human readable, key-value pairs

o Standard

o Douglas Crockford, 2006: RFC 7159 and ECMA-404

o Identical to JS objects

o Can be evaluated (without parsing) to JS structures

source: http://www.json.org/

http://www.json.org/

#12

JSON Example

o Wine & Cheese Network (source: https://gist.github.com/maxkfranz/)

{
"format_version": "1.0",
"generated_by": "cytoscape-3.2.0",
"data": {

"name": "WineCheeseNetwork"
},
"elements": {

"nodes": [
{
"data": {

"id": "430",
"name": "Aarauer Bierdeckel",
"Strength": 5,
"selected": false,
"Milk": "Raw cow's milk",
"Synonym": "Kuentener",
"Quality": 90,
"Type": "Semi-soft",
"NodeType": "Cheese",
"Country": "Switzerland"

}
},
{
"data": { ... }

},
{ ... }

],

"edges": [
{
"data": {

"id": "1763",
"source": "430",
"target": "429",
"SUID": 1763,
"name": "Aarauer Bierdeckel (cc) Bergues",
"interaction": "cc"

},
{
"data": { ... }
},
{ ... }

]

}

}

https://gist.github.com/maxkfranz/

#13

Vibrant Ecosystem (.js is the new .com)

o Vibrant ecosystem (just some examples)
o MVC Frameworks

o Backbone.js
o Capuccino
o Knockout
o AngularJS
o Ember.js

o Client
o Polymer
o Bootstrap
o React.js
o EXT.js
o D3.js
o Cordova

o Server, services
o Node.js
o MongoDB (NoSQL, JSON/BSON store)
o Microsoft Azure Cloud (hosted MongoDB, Node.js…)
o Google Cloud (JS automation, JSON APIs, JS client libs…)

Module Counts
http://www.modulecounts.com

http://www.modulecounts.com/

#14

OK, Great! But High Performance?

o JS is Turing complete
o We have high performance JS engines
o Why not compile other languages to JS?
o Use best optimizing subset of JS

o Asm.js
o It‘s still just JS
o Can be compiled ahead of time and highly optimised
o C/C++ (and other codebases) → Emscripten → JS (Asm.js subset)

o Show me the numbers!
o Currently approx. 2× slower than optimised compiled C/C++

source: F. Khan et al.: Using JavaScript and WebCL for Numerical Computations: A Comparative
Study of Native and Web Technologies (Splash 2014, http://goo.gl/HFR3Q3)

o Improvements are inevitable

o WebAssembly (announced 2015 by B. Eich)
o Assembler for the Web
o Industry cooperation

http://goo.gl/HFR3Q3

#15

High Performance

o Asm.js and further optimisations
o WebAssembly with wide industry support

o WebGL and WebCL
o GPU visualisation & processing

o WebWorkers API
o Simplified Map/Reduce (e.g. parallel.js)

o SIMD support coming (SIMD.js)
o Emscripten will use SIMD.js

#16

Some Impressive Demos

o High performance heatmaps (WebGL)
o http://codeflow.org/entries/2013/feb/04/high-performance-js-heatmaps/

o Chrome Experiments
o https://www.chromeexperiments.com/

o http://david.li/vortexspheres/

o D3.js Demos (visualisations)
o Directed Graph Editor: http://bl.ocks.org/rkirsling/5001347

o Force-Directed Graph: http://bl.ocks.org/mbostock/4062045

o Collatz Graph: https://www.jasondavies.com/collatz-graph/

o BananaBread (Asm.js showcase)
o Hi-Perf 3D Game: https://developer.mozilla.org/ms/demos/detail/bananabread

o Map/Reduce & Parallel processing (WebWorkers/child processes)
o Parallel.js https://adambom.github.io/parallel.js/

o JS Map/Reduce: http://jcla1.com/blog/javascript-mapreduce/

http://codeflow.org/entries/2013/feb/04/high-performance-js-heatmaps/
https://www.chromeexperiments.com/
http://david.li/vortexspheres/
http://bl.ocks.org/rkirsling/5001347
http://bl.ocks.org/mbostock/4062045
https://www.jasondavies.com/collatz-graph/
https://developer.mozilla.org/ms/demos/detail/bananabread
https://adambom.github.io/parallel.js/
http://jcla1.com/blog/javascript-mapreduce/

#17

Demo time

o Demonstration

#18

Conclusion

o JS is (more than) a language for the cloud

o JS spans data models, frameworks, clients, servers, application
automation…

o JS is high performance

o JS already has probably the richest ecosystem with
exponential growth trend

o JS can coexist with existing systems

o JS is also (high performance) cloud platform

