Corrected network measures

Overlap

 weightVladimir Batagelj

IMFM Ljubljana and IAM UP Koper

CMStatistics (ERCIM) 2015
Senate House, University of London - December 12-14, 2015

iffic Outline

Corrected
network measures
V. Batagelj

Introduction
Overlap
weight
Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Conclusions
References

1 Introduction
2 Overlap weight
3 Corrected overlap weight
4 Clustering coefficient
5 Corrected clustering coefficient
6 Conclusions
7 References

Vladimir Batagelj:

vladimir.batagelj@fmf.uni-lj.si

Current version of slides (December 16, 2015, 11 :05): http://vlado.fmf.uni-lj.si/pub/slides/ercim15.pdf

Network element importance measures

To identify important / interesting elements (nodes, links) in a network we often try to express our intuition about important / interesting element using an appropriate measure (index, weight) following the scheme
larger is the measure value of an element, more important / interesting is this element

Too often, in analysis of networks, researchers uncritically pick some measure from the literature.

Network element importance measures

Corrected
network measures
V. Batagelj

We discuss two well known network measures: the overlap weight of an edge (Onnela et al., 2007) and the clustering coefficient of a node (Holland and Leinhardt, 1971; Watts and Strogatz, 1998) .

For both of them it turns out that they are not very useful for data analytic task to identify important elements of a given network. The reason for this is that they attain the largest values on "complete" subgraphs of relatively small size - they are more probable to appear in a network than that of larger size.

We show how their definitions can be corrected in such a way that they give the expected results.

ifff Overlap weight - definition

Corrected
network measures
V. Batagelj

The (topological) overlap weight of an edge $e=(u: v) \in \mathcal{E}$ in an undirected simple graph $\mathbf{G}=(\mathcal{V}, \mathcal{E})$ is defined as

$$
o(e)=\frac{t(e)}{(\operatorname{deg}(u)-1)+(\operatorname{deg}(v)-1)-t(e)}
$$

where $t(e)$ is the number of triangles (cycles of length 3) to which the edge e belongs. In the case $\operatorname{deg}(u)=\operatorname{deg}(v)=1$ we set $o(e)=0$. Introducing two auxiliary quantities
$m(e)=\min (\operatorname{deg}(u), \operatorname{deg}(v))-1 \quad$ and $\quad M(e)=\max (\operatorname{deg}(u), \operatorname{deg}(v))-1$
we can rewrite the definiton

$$
o(e)=\frac{t(e)}{m(e)+M(e)-t(e)}, \quad M(e)>0
$$

and if $M(e)=0$ then $o(e)=0$.

2ffif Overlap weight - properties

Corrected
network measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Conclusions
References

It holds

$$
0 \leq t(e) \leq m(e) \leq M(e) .
$$

Therefore

$$
m(e)+M(e)-t(e) \geq t(e)+t(e)-t(e)=t(e)
$$

showing that $0 \leq o(e) \leq 1$.
The value $o(e)=1$ is attained exactly in the case when $m(e)=M(e)=t(e)$; and the value $o(e)=0$ exactly when $t(e)=0$.

iffic US Airports links 1997

Corrected network measures

Introduction
Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Conclusions
References

Edges with the largest overlap

cut at 0.8

Corrected network measures
V. Batagelj

Introduction
Overlap weight

Corrected
overlap weight
Clustering coefficient

Corrected clustering coefficient

Conclusions References

imfir Zoom in

Corrected network measures
V. Batagelj

Introduction

Overlap

 weightCorrected overlap weight

Clustering coefficient

Corrected clustering coefficient Conclusions References

iffif Zoom in

Corrected network measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

Clustering

 coefficientCorrected clustering coefficient

Conclusions
References

iffic Observation

Corrected
network measures
V. Batagelj

Overlap weight

From this example we see that in real-life networks edges with the largest overlap weight tend to be edges with relatively small degrees in their end-nodes. Because of this the overlap weight is not very useful for data analytic tasks in searching for important elements of a given network. We can try to improve the overlap weight definition to better suit the data analytic goals.

(iffif Corrected overlap weight

Corrected
network measures
V. Batagelj

For this we introduce a quantity

$$
\mu=\max _{e \in \mathcal{E}} t(e)
$$

We define a corrected overlap weight as

$$
o^{\prime}(e)=\frac{t(e)}{\mu+M(e)-t(e)}
$$

By the definiton of μ for every $e \in \mathcal{E}$ it holds $t(e) \leq \mu$. Since $M(e)-t(e) \geq 0$ also $\mu+M(e)-t(e) \geq \mu$ and therefore $0 \leq o^{\prime}(e) \leq 1$. Also $o^{\prime}(e)=0$ exactly when $t(e)=0$. But, $o^{\prime}(e)=1$ exactly when $\mu=M(e)=t(e)$.

US Airports links

with the largest corrected overlap weight, cut at 0.5

Corrected network measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Conclusions
References

$$
\mu=80
$$

US Airports links

with the largest corrected overlap weight

Corrected
network
measures
V. Batagelj

Introduction

Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

u	\checkmark	t (e)	du)	d(v)	O
The WB Hartsfield Atlan	Charlotte/Douglas Intl	76	101	87	0.73077
The WB Hartsfield Atlan	Dallas/Fort Worth Intl	73	101	118	0.58871
Chicago O'hare Intl	Pittsburgh Intll	80	139	94	0.5797
Chicago O'hare Intl	Lambert-St Louis Intl	80	139	94	0.5797
Dallas/Fort Worth Intl	Chicago O'hare Intl	78	118	139	0.557
The WB Hartsfield Atlan	Chicago D'hare Intl	77	101	139	0.5461

US Airports links $o^{\prime}($ WB Hartsfield Atlanta, Charlotte/Douglas Intl $)=0.7308$

Corrected network measures
V. Batagelj

Introduction

Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient Conclusions References

ifffic Comparison

Corrected
network
measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Conclusions
References

Overlap weights

ifffi Comparison - minDeg(e)/maxDeg(e)

Corrected
network
measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Conclusions
References

Overlap weights

Overlap weights

ifffi Comparison - maxDeg(e)

Corrected
network
measures
V. Batagelj

Introduction

Overlap weight

Corrected

 overlap weightClustering coefficient

Corrected clustering coefficient

Conclusions
References

Overlap weights

Overlap weights

iffif Comparison - minDeg(e)

Corrected
network
measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected
clustering coefficient

Conclusions
References

ifff Comparison - \# of triangles

Corrected
network
measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Conclusions
References

Overlap weights

Overlap weights

ifffic Clustering coefficient

Corrected
network measures
V. Batagelj

For a node $u \in \mathcal{V}$ in an undirected simple graph $\mathbf{G}=(\mathcal{V}, \mathcal{E})$ its clustering coefficient is measuring a local density in node u and is defined as

$$
c c(u)=\frac{|\mathcal{E}(N(u))|}{\left|\mathcal{E}\left(K_{\operatorname{deg}(u)}\right)\right|}=\frac{2 \cdot E(u)}{\operatorname{deg}(u) \cdot(\operatorname{deg}(u)-1)}, \quad \operatorname{deg}(u)>1
$$

where $N(u)$ is the set of neighbors of node u. If $\operatorname{deg}(u) \leq 1$ then $c c(u)=0$.
It is easy to see that

$$
E(u)=\frac{1}{2} \sum_{e \in S(u)} t(e)
$$

where $S(u)$ is the star in node u.
It holds $0 \leq c c(u) \leq 1 . c c(u)=1$ exactly when $\mathcal{E}(N(u))$ is isomorphic to $K_{\operatorname{deg}(u)}$.

$i m f$ US Airports links with clustering coefficient $=1$

Corrected
network
measures
V. Batagelj

Introduction

Overlap
weight
Corrected
overlap weight
Clustering coefficient

Corrected clustering coefficient

Conclusions
References
1 Wiley Post-Will Rogers Mem
2 Ralph Wien Memorial
3 Aniak
4 Toledo Express
5 Myrtle Beach Intl
6 Rota Intl
7 Jack Mc Namara Field
8 Port Heiden
9 New Hanover Intll

28 Kwethluk
29 Hector Intll
30 Tompkins County
31 Cape Girardeau Regional
32 Merced Municipal/Macready Fie
33 King Salmon
34 Modesto City-County--Harry
35 Natrona County Intl
36 Williamson County Regional
37 Deadhorse
38 Nome
39 Akiak
40 Dillingham
41 Evansville Regional
42 Charlottesville-Albemarle
43 Bishop Intll
44 Gunnison County
45 Friedman Memorial
46 Aspen-Pitkin Co/Sardy Field
47 Mbs Intll
48 Kwigillingok
49 Minot Intl
50 Pago Pago Intl
51 Babelthuap/Koror
52 Decatur
53 Quincy Muni Baldwin Field
54 Rafael Hernandez

55 Kongiganak
56 Bellingham Intl
57 La Crosse Muni
58 Hilo Intll
59 Rochester Intl
60 Kapalua
61 Lihue
62 Mc Allen Miller Intl
63 Rio Grande Valley Intl
64 Eareckson As
65 Corpus Christi Intl
66 St Petersburg/Clearwater In
67 Lehigh Valley Intll
68 Gainesville Regional
69 Burlington Regional
70 Lafayette Regional
71 Tuntutuliak
72 Tallahassee Regional
73 University Park
74 Sand Point
75 Tyler Pounds Field
76 Tweed-New Haven
77 Gregg County
78 Wilkes-Barre/Scranton Intl
79 Eastern Oregon Regional At
80 Stewart Intl

Again we see that the clustering coefficient attains its largest value in nodes with relatively small degree. The probability that we get a complete subgraph on $N(u)$ is decreasing fast with increasing of $\operatorname{deg}(u)$.

$i 4 f i$
 Corrected clustering coefficient

Corrected
network measures
V. Batagelj

To get a corrected version of the clustering coefficient we proposed in Pajek to replace $\operatorname{deg}(u)$ in the denominator with $\Delta=\max _{v \in \mathcal{V}} \operatorname{deg}(v)$. In this paper we propose another solution - we replace $\operatorname{deg}(u)-1$ with μ :

$$
c c^{\prime}(u)=\frac{2 \cdot E(u)}{\mu \cdot \operatorname{deg}(u)}, \quad \operatorname{deg}(u)>0
$$

To show that $0 \leq c c^{\prime}(u) \leq 1$ we have to consider two cases:
a. $\operatorname{deg}(u) \geq \mu$: then for $v \in N(u)$ we have $\operatorname{deg}_{N(u)}(v) \leq \mu$ and therefore

$$
2 \cdot E(u)=\sum_{v \in N(u)} \operatorname{deg}_{N(u)}(v) \leq \sum_{v \in N(u)} \mu=\mu \cdot \operatorname{deg}(u)
$$

b. $\operatorname{deg}(u)<\mu$: then $\operatorname{deg}(u)-1 \leq \mu$ and therefore

$$
2 \cdot E(u) \leq \operatorname{deg}(u) \cdot(\operatorname{deg}(u)-1) \leq \mu \cdot \operatorname{deg}(u)
$$

The value $c c^{\prime}(u)=1$ is attained in the case a on a μ-core, and in the case b on $K_{\mu+1}$.

US Airports links

with the largest corrected clustering coefficient

Corrected
network measures
V. Batagelj

Introduction

Overlap
weight
Corrected
overlap weight
Clustering coefficient

Corrected clustering coefficient Conclusions

References

Rank	Value	Id	Rank	Value	Id
1	0.3739	Cleveland-Hopkins Intl	26	0.2990	Minneapolis-St Paul Intl/Wold-
2	0.3700	General Edward Lawrence Logan	27	0.2956	General Mitchell Intll
3	0.3688	Orlando Intl	28	0.2942	Phoenix Sky Harbor Intl
4	0.3595	Tampa Intl	29	0.2935	Palm Beach Intl
5	0.3488	Cincinnati/Northern Kentucky I	30	0.2914	Charlotte/Douglas Intl
6	0.3457	Detroit Metropolitan Wayne Cou	31	0.2881	Memphis Intl
7	0.3455	Newark Intl	32	0.2859	Lambert-St Louis Intl
8	0.3429	Baltimore-Washington Intl	33	0.2847	San Diego Intl-Lindbergh Fld
9	0.3415	Miami Intl	34	0.2824	Pittsburgh Intll
10	0.3405	Washington National	35	0.2762	Stapleton Intl
11	0.3379	Nashville Intll	36	0.2724	Washington Dulles Intl
12	0.3359	John F Kennedy Intl	37	0.2661	Dallas/Fort Worth Intl
13	0.3347	Philadelphia Intl	38	0.2595	Raleigh-Durham Intll
14	0.3335	Indianapolis Intl	39	0.2541	Chicago O'hare Intl
15	0.3335	La Guardia	40	0.2489	San Francisco Intl
16	0.3311	Mc Carran Intl	41	0.2386	Greater Buffalo Intl
17	0.3301	Fort Lauderdale/Hollywood Intl	42	0.2295	John Wayne Airport-Orange Coun
18	0.3106	New Orleans Intl/Moisant Fld/	43	0.2241	Seattle-Tacoma Intl
19	0.3095	Bradley Intl	44	0.2211	Sarasota/Bradenton Intl
20	0.3045	Port Columbus Intl	45	0.2207	Ontario Intl
21	0.3038	Los Angeles Intl	46	0.2175	Syracuse Hancock Intl
22	0.3036	Houston Intercontinental	47	0.2163	San Jose Intll
23	0.3036	Kansas City Intl	48	0.2158	Norfolk Intl
24	0.3017	Southwest Florida Intl	49	0.2144	Salt Lake City Intl
25	0.3002	The William B Hartsfield Atlan	50	0.2056	Greater Rochester Intl

imf
 Cleveland-Hopkins Intl neighbors

Corrected network measures
V. Batagelj

Introduction

Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected

 clustering coefficient Conclusions References

ifffic Comparison

Corrected
network
measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Conclusions
References

Clustering coefficients

Clustering coefficients

iffif Comparison - degrees

Corrected
network
measures
V. Batagelj

Introduction
Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Conclusions
References

Clustering coefficients

Clustering coefficients

Conclusions

Corrected
network measures
V. Batagelj

In the corrected measures we can replace μ with Δ. Its advantage is that it can be easier computed; but the corresponding measure is less 'sensitive'.

References I

Corrected
network measures

V．Batagelj

Introduction

Overlap weight

Corrected overlap weight

Clustering coefficient

Corrected clustering coefficient

Conclusions
References

睩 P．W．Holland and S．Leinhardt（1971）．＂Transitivity in structural models of small groups＂．Comparative Group Studies 2：107－124．

围
Onnela，J．P．，Saramaki，J．，Hyvonen，J．，Szabo，G．，Lazer，D．，Kaski， K．，Kertesz，J．，Barabasi，A．L．：Structure and tie strengths in mobile communication networks．Proceedings of the National Academy of Sciences 104（18）， 7332 （2007）paper

D．J．Watts and Steven Strogatz（June 1998）．＂Collective dynamics of＇small－world＇networks＂．Nature 393 （6684）：440－442．

Wikipedia：Clustering coefficient
國 Wikipedia：Overlap coefficient

ifff Acknowledgments

Corrected
network measures
V. Batagelj

This work was supported in part by the Slovenian Research Agency (research program P1-0294 and research projects J5-5537 and J1-5433).

The attendance on the CMStatistics (ERCIM) 2015 Conference was partially supported by the COST Action IC1408-CRoNoS.

