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Abstract

The paper builds on the representation of units/clusters with a special type
of symbolic objects that consist of distributions of variables. Two compatible
clustering methods are developed: the leaders method, that reduces a large
dataset to a smaller set of symbolic objects (clusters) on which a hierarchical
clustering method is applied to reveal its internal structure. The proposed
approach is illustrated on USDA Nutrient Database.
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1 Introduction

Nowadays lots of large datasets are available in databases. One of possible ways
how to extract information from these datasets is to find homogeneous clusters of
similar units. For the description of the data vector descriptions are usually used.
Each its component corresponds to a variable which can be measured in different
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scales (nominal, ordinal, or numeric). Most of the well known clustering methods
are implemented only for numerical data (e.g., k-means method) or are too complex
for clustering large datasets (such as hierarchical methods based on dissimilarity
matrices). For these reasons we propose to use for clustering large datasets a combi-
nation of the adapted leaders and hierarchical clustering methods based on special
descriptions of units and clusters. This description is based on a special kind of sym-
bolic objects (Bock and Diday (2000)), formed by the distributions of partitioned
variables over a cluster — histograms.

2 The descriptions of units and clusters

Let E be a finite set of units X, which are described by frequency /probability dis-
tributions of their descriptors {Vi,---,V;,} (Korenjak-Cerne and Batagelj (1998)).
The domain of each variable V is partitioned into ky sub-sets {V;, i = 1,...ky}.
For a cluster C we denote

Qi:,CV) = {XelC:V(X)eVi}, i=1,...,ky,
q(1,C;V) = card(Q(:,C;V)), (frequency)

oy 90,C5V) :
fG@,Cv) = card(C) (relative frequency)

where V(X) is the value of variable V' on unit X, and card(C) is the number of
units in the cluster C'. It holds

ky

Z f@,C;v)y=1

i=1
The description of the cluster C' by the variable V is the vector of the frequencies of
Vi (i=1,---,ky). A unit is considered as a special cluster with only one element and
can be in our approach represented either with a single value or by the distributions
of the partitioned variables.

Such a description has the following important properties:

e it requires a fized space per variable;

e it is compatible with merging of disjoint clusters — knowing the description
of clusters C7 and Co, C1 N Cy = (), we can, without additional information,
produce the description of their union

_card(Cy) f(i,C1; V) + card(Cy) f(i,Co; V) |

f,C1UCy V) = card(C1 U Cy) ’

e it produces an uniform description for all the types of descriptors.
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3 Dissimilarity

In the following we shall use two dissimilarities, both defined as a weighted sum of
the dissimilarities on each variable:

m m
d(Cl,CQ) = ZO&j d(Cl,CQ;‘/j), Zaj =1 (1)
j=1 j=1
where
18
daps(C1, Co; Vj) = EZ\f(’iaCﬁV})—f(i,C%V}H (2)
i=1
or
18
dsqr (C1, Co3 V) = 5 3 (i, C1s Vi) = [, Co3 V7)), (3)
i=1

kj = ky;. Here, aj > 0 (j = 1,...,m) denote weights, which could be equal for
all variables or different if we have same information about the importance of the
variables.

For the dissimilarity dg;s the triangle inequality also holds. Therefore it is also
a semidistance.

4 The adapted leaders method

For clustering large datasets the clustering procedures based on dissimilarity matrix
are too time consuming. A more appropriate approach is the adapted leaders method
— a variant of the dynamic clustering method (Diday (1979), Korenjak-Cerne and
Batagelj (1998), Verde et al. (2000)). This method can be shortly described with
the following procedure:

determine an initial clustering
repeat

determine leaders of the clusters in the current clustering;

assign each unit to the nearest new leader — producing a new clustering
until the leaders do not change more.

The leaders method is solving the following optimization problem:
Find a clustering C* in a set of feasible clusterings ® for which

P(C") = min P(C) (4)
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with the criterion function

P(C)= ) p(C) and  p(C)= ) d(X,Lc), ()
CceC XeC

where L¢ represents the leader (a representative element) of the cluster C. In our
case the set of feasible clusterings @ is a set of partitions of the set £. The number
of the clusters could be fixed a priori or could be determined with the selection of
the maximal allowed dissimilarity between the unit and the nearest leader.

In the elaboration of the proposed approach we assume that the descriptions of
the leaders have the same form as the descriptions of the units and clusters:

L = [L(WV),...,L(Vy)],
LWV) = [s(1,L;V),...,s(kv,L; V)],

where Ele s(j,L; V) =1

It can be proved that for the first criterion function P,s, where in the definition
(5) the dissimilarity dgps is used, the optimal leaders are determined with maximal
frequencies

. Lifjem
s, L V) = { 6 otherwise

where M = {j : q(4,C;V) = max; q(i,C;V)} and t = card(M). The precondition
for this result is that all units should be represented with a single value for each
variable (this is usually the case).

For the second criterion function P4 with dissimilarity dsg- the optimal leaders
are uniquely determined with the averages of relative frequencies

1

s L V) = card(C)

> FEX5V).

XeC

This is an extended version of the well-known k-means method, which is appropriate
only for numerical variables (Hartigan (1975)). The main advantages of the second
method are:

e the input unit can be represented also with distributions, and not only with a
single value for each variable,

e the optimal leaders are uniquely determined.
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5 Building a hierarchy

To produce a hierarchical clustering on the clusters represented with their leaders
the standard agglomerative hierarchical clustering method is used:

each unit is a cluster: C; = {{X}: X € E} ;
they are at level 0: h({X}) =0, X € E ;
fork:=1ton—1do
determine the closest pair of clusters
(p,q) = argmin, ;.,.;{D(C;, C;): C;, Cj € Cy} ;
join them
Cry1 = (Ci \ {Cp, C}) U{Cp U Cy}
h(Cp U Cq) = D(Cpa Cq)
endfor

The level h(C) of the cluster C = C,UC, is determined by the dissimilarity between
the joint clusters Cy, and C,; by h(CpUC,) = D(Cp, Cy). The units X are the clusters
from the initial clustering, represented with their leaders. h(C) = 0 for C from the
initial clustering.

The dissimilarity between clusters D(C,, Cy) measures the change of the value
of the criterion function produced by the merging of the clusters C}, and C,

D(Cpa Cq) = p(Cp U Cq) - P(Cp) - p(Cq) (6)

For the second criterion function Py, the dissimilarity D(Cp, Cy) can be determined
using the analogue of the Ward’s relation (Batagelj (1988)):

card(C)p) - card(Cy)
card(Cp) + card(Cy)

D(Cpa Cq) = d(Lp’Lq)-

6 Example

The proposed approach was successfully applied to some large datasets (for example,
the dataset on the topic Family and Changing Gender Roles I and II with 45785
units and 33 selected variables from ISSP datasets). We are presenting here the
results on the nutrient database from U.S. Department of Agriculture. The dataset
contains data on 6039 foods — units. We considered in this study 31 nutrients —
numerical variables describing each food. This dataset was selected because the
results can be interpreted in easy-to-understand way.
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Figure 1: The graph of the distribution of the variable fa-mono.

6.1 Partition of domains of variables

The domain of each variable is divided into 10 sub-sets: one with the value, that
indicates missing value, one with the value zero, and one special sub-set with outlying
(extremely large) values. The rest of the values are divided into 7 sub-sets with equal

number of values (Dougherty et al. (1995)).

For example, the variable fa-mono (total monounsaturated fatty acids) has 395
missing values, 128 units have value 0 and 7 units have extremely large values.
The distribution of the values for this variable is presented in the Figure 1 and the

following is our partition of it’s domain:

var=fa_mono
MAP
-1 (missing)
1={0}
2=(0,0.035]
3=(0.035,0.3]
4=(0.3,1.25)

[1.25,3]
(3,5.6)
[6.6,9.5)
L

L

9.5,65)

5
6
7
8
9=[65,85] (outliers)
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6.2 Transformed data

Each unit is represented with the vector of indices of sub-sets in which ly its real
values. For example: the food BUTTER,WITH SALT with the ID = 1001 has for
the first five variables and their indices the following values:

1D water food energy protein total lipid (fat) carbohydrate
1001 15.87 717 0.85 81.11 0.06
1001 3 8 2 8 2

because for the water (g/100g) the third sub-set is 3 = (5.65,29.5], the eighth sub-
set for energy (kcal/100g) is 8 = (386,800), the second sub-set for protein (g/100g)
is 2 = (0,1.5], the eighth sub-set for fat (g/100g) is 8 = [23.5,85) and the second
sub-set for carbohydrate (g/100g) is 2 = (0, 3.5].

6.3 Clustering results

In the leaders program the initial clustering with 30 clusters was randomly selected.
For the selected dissimilarity dsg the 30 leaders stabilized after 29 iterations. On
these leaders the hierarchy based on the same dissimilarity was built. The dendro-
gram displayed in Figure 2 was obtained. The hierarchy we got has three main
branches: meats, (mainly) vegetables, and (mainly) cereals. For each node of the
dendrogram, the distribution for each variable is also determined. For example, the
cluster Beefs = Beefl U Beef3 U Beef2 has the description given in Table 1. It con-
sists of 591 units. From this table the following characteristics of the cluster Beefs
can be seen:

|4 modus sub-set % of units extanded sub-set % of units
fiber —td {0} 99.49 {0} U {missing} 100.00
vit — A {0} 99.49 {0} U {missing} 100.00
vit — C {0} 99.32 {0} U {missing} 100.00
carbohyd {0} 99.32  [0,6.85] 100.00
zine [4.12, 20) 72.93  [2.23,20) 100.00
sodium [50, 66) 69.88 [10,121) 99.32

For each variable the complete distribution can be observed. For example, from
the Table 1 we can see that for the variable fa-mono 184 (31.13 %) units from this
cluster have values in the 6th sub-set (3,5.6). But if we extend the interval to (3, 65)
(union of three sub-sets) 85.96 % of all units from the cluster Beefs are included in
it. Detailed results and programs are available at

http://www.educa.fmf .uni-1j.si/datana/ .
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Figure 2: The dendrogram on 30 leaders of food’s clusters.
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Clustering results

Table 1: g(Beefs,V)

\% 0 2 3 4 5 6 7 8 out mis
water 0 0 1 167 264 130 29 0 0 0
energ — kc 0 0 0 54 231 183 103 20 0 0
protein 0 0 0 0 8 245 338 0 0 0
tot — lipi 0 0 0 10 101 178 169 133 0 0
carbohyd | 587 3 1 0 0 0 0 0 0 0
fiber —td | 588 0 0 0 0 0 0 0 0 3
ash 0 0 195 278 101 13 4 0 0 0
calcium 0 294 241 52 2 0 0 2 0 0
phosphor 0 0 0 0 71 227 273 20 0 0
iron 0 0 0 1 61 248 277 4 0 0
sodium 0 0 26 413 148 0 0 4 0 0
potassiu 0 0 0 0 75 225 279 12 0 0
Magnesiu 0 0 11 166 197 208 9 0 0 0
zinc 0 0 0 0 0 160 431 0 0 0
copper 0 0 76 0 436 79 0 0 0 0
Manganes 0 346 242 3 0 0 0 0 0 0
selenium 0 0 0 4 168 378 41 0 0 0
vit — A 588 0 0 0 0 0 0 0 0 3
vit — E 0 1 218 65 0 0 0 0 0 307
thiamin 0 0 3 122 315 150 0 1 0 0
ribol fla 0 0 0 41 233 202 115 0 0 0
niacin 0 0 0 5 327 240 19 0 0 0
panto — ac 0 0 11 375 201 2 0 0 0 2
vit — B6 0 0 0 1 2 188 311 89 0 0
folate 0 1 335 228 23 1 0 0 0 3
vit — B12 0 0 0 0 1 163 300 127 0 0
vit — C 587 0 0 0 0 0 0 0 0 4
fa — sat 0 0 0 2 65 147 183 194 0 0
fa — mono 0 0 0 2 81 184 170 154 0 0
fa — poly 0 2 147 237 187 18 0 0 0 0
cholestr 0 0 3 150 169 205 64 0 0 0
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