

Photo: V. Batagelj, Araneus diadematus

Problems and projects

Vladimir Batagelj

University of Ljubljana

Networks Workshop NICTA, Sydney, June 2005

Outline

1	Open problems in GBM	1
13	Further Readings / Books	13
15	Further Readings / Papers	15
17	Some links	17

Open problems in GBM

- GBM of valued networks
- GBM of multirelational networks
- GBM of temporal networks
- GBM of large networks

GBM of valued networks

Can the clustering with relational constraint and blockmodeling problem be generalized to a common problem?

Batagelj V., Ferligoj A.: Clustering relational data. Data Analysis (ed.: W. Gaul, O. Opitz, M. Schader), Springer, Berlin 2000, 3-15.

General problem of clustering relational data

The relationally constrained clustering problem with simple criterion function considers only the diagonal blocks that should be of one of the types $\Phi^i(R)$. It also takes into account the dissimilarity matrix on units (derived from attribute data).

The blockmodeling problem deals only with relational data. The proposed optimization approach essentially expresses the constraints with a penalty function.

Both problems can be expressed as special cases of a clustering problem with a general criterion function of the form

- **G1s**. $P(\mathbf{C}) = \sum_{(C_1, C_2) \in \mathbf{C} \times \mathbf{C}} q(C_1, C_2)$, or
- G1m. $P(\mathbf{C}) = \max_{(C_1, C_2) \in \mathbf{C} \times \mathbf{C}} q(C_1, C_2)$

where q is a block error satisfying

• **G2**. $q(C_1, C_2) \ge 0$

... clustering relational data

The set of feasible clusterings $\Phi_k(R)$ for this problem is determined by the relation R and additional requirements, such as:

- the blocks should be of selected types
- the model graph should be of specified form (prespecified)
- selected units should / should not be in the same cluster
- selected unit should / should not be in the selected cluster

Approaches to the problem

There are different types of relational data (valued networks). In the following we shall assume $\mathcal{N} = (V, R, a, b)$ where $a : V \to A$ assigns a value to each unit/vertex and $b : R \to B$ assigns a value to each arc (link) of R. A and B are sets of values.

The function b determines a matrix $\mathbf{B} = [b_{ij}]_{n \times n}, b_{ij} \in B \cup \{0\}$ and $b_{ij} = 0$ if units i and j are not connected by an arc.

We can approach the problem of clustering relational data by *indirect* (transformation to standard data analysis problems) or *direct* (formulating the problem as an optimization problem and solving it) approach.

Indirect approach

A scenario for the indirect approach is to transform attribute data a into dissimilarity matrix D_a and network data b into dissimilarity matrix D_b and build criterion functions P_a and P_b based on them (they can be defined also directly from a and b). Then we apply the multicriteria relationally constrained clustering methods on these functions.

We can also first combine D_a and D_b into a joint matrix D_{ab} and apply relationally constrained clustering methods on it.

In a special case, when D_b is defined as some corrected dissimilarity (see Batagelj, Ferligoj, Doreian, 1992) between descriptions $\mathbf{b}(x) = [\mathbf{B}(x), \mathbf{B}^T(x)]$, the relational data are built into D_b and we can apply on the combined matrix D_{ab} all standard methods for analysis of dissimilarity matrices.

Direct approach

Again there are different possibilities:

- Structural approach: used in program MODEL (Batagelj, 1996): Important is the structure (relation). Determine the best clustering C and the corresponding model. On the basis of *a*, *b* and the obtained model compute values of model connections.
- 2. Multicriteria approach: construct two criterion functions: one based on values, the second based on structure. Solve the obtained multicriteria problem (Ferligoj, Batagelj, 1992).
- 3. Implicit approach: the types of connections are built into the criterion function combined with values.

Only the last approach needs some further explanations.

Implicit approach

Let \approx be an equivalence over set of units V, and \mathcal{T} given types. We construct on blocks deviation functions $\delta(C_1, C_2; T), T \in \mathcal{T}$ such that \approx is compatible with \mathcal{T} over the network \mathcal{N} iff

$$\forall u, v \in V \exists \delta(., .; T), T \in \mathcal{T} : \delta([u], [v]; T) = 0$$

Applying also an adequate normalization of δs we can construct a criterion function

$$P(\mathbf{C}) = \sum_{C_1, C_2 \in \mathbf{C}} \min_{T \in \mathcal{T}} \delta(C_1, C_2; T)$$

Evidently, $P(\mathbf{C}) = 0 \Leftrightarrow \mathbf{C}$ is compatible with \mathcal{T} — all blocks of \mathbf{C} are compatible with \mathcal{T} .

7

Some examples

Assume that a and b are transformed into a matrix $\mathbf{A} = [a_{uv}]_{V \times V}, a_{uv} \ge 0$. Then

$$\delta(X, Y; \operatorname{nul}) = \frac{\sum_{x \in X, y \in Y} a_{xy}}{|X| \cdot |Y| \cdot \max\{a_{xy} : x \in X, y \in Y\}}$$

$$\delta(X, Y; \operatorname{rdo}) = 1 - \max_{x \in X} \frac{\sum_{y \in Y} a_{xy}}{|Y| \cdot \max\{a_{xy} : y \in Y\}}$$

$$\delta(X, Y; \operatorname{cre}) = 1 - \frac{\sum_{y \in Y} \max_{x \in X} a_{xy}}{|Y| \cdot \max\{a_{xy} : x \in X, y \in Y\}}$$

If max in the denominator equals to 0 then also the fraction has value 0. Aleš Žiberna is working on approaches to GBM of valued networks.

NICTA Networks Workshop, June 2005

GBM of multirelational networks

Multiple networks are networks with more than one relation defined on the same set of vertices.

Assume that we have relations R_1, R_2, \ldots, R_s and corresponding criterion functions P_1, P_2, \ldots, P_s compatible respectively with $\mathcal{T}_1, \mathcal{T}_2, \ldots, \mathcal{T}_s$. Then we get the following multicriteria optimization problem: determine $\mathbf{C}^* \in \Phi$ that 'minimizes'

$$(\Phi, P_1, P_2, \ldots, P_s)$$

This problem can be approched by (Ferligoj, Batagelj, 1992)

- multicriteria optimization. The solutions are Pareto points.
- transformation to single criterion optimization
 - by combining criterion functions: $\sum \alpha_i P_i$ or $\max \alpha_i P_i$, where $\alpha_i \ge 0$ and $\sum \alpha_i = 1$;
 - by combining relations.

GBM of temporal networks

If the clustering C is the same for all time points we can treat the GBM of temporal networks problem as a GBM of multirelational networks for relations determined by the time slices.

In general, however, also the clustering C can change through time – the solution is a sequence of clusterings $(C_1, C_2, ..., C_s)$, $C_i \in \Phi_i$ (or $C_i \in \Phi_i(C_{i-1})$).

The affect data from Sampson (1968) provide a useful source for examining structural balance through time (see Doreian and Mrvar, 1996).

GBM of large networks

Large networks are usually sparse $m \ll n^2$.

In the case of given partition C (for example partition of contries to continents, patents to categories, ...) it is easy to determine the corresponding GBM that minimizes the criterion function.

A special class of GBM problems are symmetric-acyclic decompositions (Doreian, Batagelj, Ferligoj, 2000) for which also an algorithm for large networks was developed.

... GBM of large networks

For some GBM problems on large networks the clustering methods can be used:

- if we have to compute the dissimilarities between attribute data for vertices we may consider methods that require only dissimilarities between the linked vertices;
- if we base the clustering on the descriptions of vertices using selected structural properties we can consider some variant of leader's method.

The leader's method works in $\Phi \times \Psi$.

```
R = R_0 \in \Psi

repeat

C = H(R); R = G(C)

until stabilizes;
```

Idea: Ψ is the set feasible models.

Further Readings / Books

- W. de Nooy, A. Mrvar, V. Batagelj: *Exploratory Social Network Analysis with Pajek*, CUP, 2005. Amazon. ESNA page.
- P. Doreian, V. Batagelj, A. Ferligoj: *Generalized Blockmodeling*, CUP, 2004. Amazon.
- P. Doreian, V. Batagelj, A. Ferligoj: *Positional analyses of sociometric data*. in Carrington, P.J., Scott, J., Wasserman, S., (Eds.) Models and Methods in Social Network Analysis. CUP, Berlin 2005, p. 77-97. Amazon.
- V. Batagelj, A. Mrvar: *Pajek Analysis and Visualization of Large Networks*. in Jünger, M., Mutzel, P., (Eds.) Graph Drawing Software. Springer, Berlin 2003, p. 77-103. Amazon.
- S. Wasserman, K. Faust: *Social Network Analysis: Methods and Applications*. CUP, 1994. Amazon.
- J. P Scott: Social Network Analysis: A Handbook. SAGE Publications, 2000. Amazon.
- A. Degenne, M. Forsé: *Introducing Social Networks*. **SAGE** Publications, 1999. Amazon.
- U. Brandes, T. Erlebach (Eds.): *Network Analysis : Methodological Foundations*. LNCS, Springer, Berlin 2005. Amazon.

- S.N. Dorogovtsev, J.F.F. Mendes: *Evolution of Networks: From Biological Nets to the Internet and Www.* **OUP**, 2003. Amazon.
- P. Baldi, P. Frasconi, P. Smyth: *Modeling the Internet and the Web: Probabilistic Methods and Algorithms*. John Wiley & Sons, 2003. Amazon.
- J. Abello, P.M. Pardalos, M.G. Resende(Eds.): *Handbook of Massive Data Sets*. Springer, 2002. Amazon.
- R. Sedgewick, M. Schidlowsky: *Graph Algorithms (Algorithms in Java, Part 5)*, Third Edition. Addison-Wesley, 2003. Amazon.
- R.K. Ahuja, T.L. Magnanti, J.B. Orlin *Network Flows: Theory, Algorithms, and Applications*. Prentice Hall, 1993. Amazon.
- D.E. Knuth: *The Stanford GraphBase: A Platform for Combinatorial Computing*. Addison-Wesley, 1993. Amazon.
- F. Harary, R.Z. Norman, D. Cartwright: *Structural Models: An Intoroduction to the Theory of Directed Graphs.* John Wiley, 1965.
- F.S. Roberts: *Discrete Mathematical Models with Applications to Social, Biological, and Environmental Problems.* Prentice Hall, 1976. Amazon.

Further Readings / Papers

- J. Kleinberg: *Authoritative sources in a hyperlinked environment*. Proc. 9th ACM-SIAM Symposium on Discrete Algorithms, 1998. PDF.
- U. Brandes: *A Faster Algorithm for Betweenness Centrality*. Journal of Mathematical Sociology 25(2):163-177, 2001. PDF.
- V. Batagelj, U. Brandes: *Efficient Generation of Large Random Networks*. Physical Review E 71, 036113, 2005. PDF.
- H. Stuckenschmidt, M. Klein: *Structure-Based Partitioning of Large Concept Hierarchies*. Proceedings of the 3rd International Semantic Web Conference ISWC 2004, Hiroshima, Japan. PDF.
- J.I. Alvarez-Hamelin, L. Dall'Asta, A. Barrat, A. Vespignani: *k-core decomposition: a tool for the visualization of large scale networks*. cs.NI/0504107, 28 Apr 2005. PDF.
- W.W. Powell, D.R. White, K.W. Koput, J. Owen-Smith: *Network Dynamics and Field Evolution: The Growth of Interorganizational Collaboration in the Life Sciences.* American Journal of Sociology 110(4):1132-1205, 2005. PDF.
- V. Batagelj, A. Mrvar: *Density based approaches to network analysis: Analysis of Reuters terror news network*. LinkKDD2003, Washington, August 27, 2003. PDF.

- P. Doreian, V. Batagelj, A. Ferligoj: *Symmetric-Acyclic Decompositions of Networks*. Journal of Classification, 17(1), 3-28, 2000. PDF.
- V. Batagelj, A. Mrvar, M. Zaveršnik: *Network Analysis of Texts*. Erjavec, T., Gros, J. (Eds.) Language Technologies, Ljubljana, p. 143-148, 2002. PDF.
- K. Hamberger, M. Houseman, E. Daillant, D.R. White, L. Barry: *Matrimonial ring structures*. Forthcoming in Mathematiques, informatique, et sciences humaines, 2005.
 PDF.
- A. Mrvar, V. Batagelj: *Relinking Marriages in Genealogies*. Metodološki zvezki, 1(2), 407-418, 2004. PDF.
- M.E.J. Newman: *The structure and function of complex networks*. SIAM Review 45, 167-256, 2003. PDF.
- K.K. Mane, K. Börner: *Mapping topics and topic bursts in PNAS*. PNAS 101: 5287-5290, 2004. PDF, PNAS.

Some links

- International Network for Social Network Analysis INSNA.
- R.A. Hanneman, M. Riddle: Introduction to social network methods. href.
- Pajek Data Sets. href.
- The InfoVis CyberInfrastructure Software. href.
- Advanced Course on Knowledge Discovery, Ljubljana, Slovenia, June 27-July 5, 2005. href.
- Last version of these slides. href.

