

ISEG Technical University of Lisbon

Introductory Workshop to Network Analysis of Texts

Network structure

Vladimir Batagelj University of Ljubljana

Lisbon, Portugal: 2nd to 5th February 2004

organized by **SOCIUS** – Research Centre on Economic Sociology and the Sociology of Organisations

Outline

1	Approaches to large networks	1
2	Degrees	2
3	Pajek and R	3
4	Random graphs	4
5	Degree distribution	5
6	Homomorphisms of graphs	6
7	Clusters, clusterings, partitions, hierarchies	7
8	Contraction of cluster	8
10	Subgraph	10
12	Cuts	12
13	Walks	13
14	Shortest paths	14

16	Equivalence relations and Partitions	16
18	Connectivity	18
19	Special graphs – bipartite, tree	19
20	Reduction (condensation)	20
23	Bow-tie structure of the Web graph	23
24	Biconnectivity	24
25	k-connectivity	25
26	Triangular and short cycle connectivities	26
31	Islands	31
37	Dense groups	37
38	Cores and generalized cores	38

Approaches to large networks

In analysis of a *large* network (several thousands or millions of vertices, the network can be stored in computer memory) we can't display it in its totality; also there are only few algorithms available.

To analyze a large network we can use statistical approach or we can identify smaller (sub) networks that can be analyzed further using more sophisticated methods.

Degrees

degree of vertex v, deg(v) = numberof links with v as end-vertex; *indegree* of vertex v, indeg(v) =number of links with v as terminal vertex (end-vertex is both initial and terminal);

outdegree of vertex v, outdeg(v) = number of links with v as initial vertex.

$$n = 12, \ m = 23, \ \operatorname{indeg}(e) = 3, \ \operatorname{outdeg}(e) = 5, \ \operatorname{deg}(e) = 6$$
$$\sum_{v \in V} \operatorname{indeg}(v) = \sum_{v \in V} \operatorname{outdeg}(v) = |A| + 2|E|, \ \sum_{v \in V} \operatorname{deg}(v) = 2|L| - |E_0|$$

ISEG, Lisbon, Portugal: Introductory Workshop to Network Analysis of Texts

Pajek and R

Pajek 0.89 (and later) supports the use of external programs (menu Tools). It provides a special support for statistical program R.

In **Pajek** we determine the degrees of vertices and submit them to R

```
info/network/general
Net/Partitions/Degree/All
Partition/Make Vector
Tools/Program R/Send to R/Current Vector
```

In R we determine their distribution and plot it

Attention! The vertices of degree 0 are not considered by tabulate.

Random graphs

Erdős and Renyi defined a *random graph* as follows: every possible link is included in a graph with a given probabilty p. In **Pajek**'s

Net/Random Network/Erdos-Renyi instead of probability p a more intuitive average degree is used

$$\overline{\deg} = \frac{1}{n} \sum_{v \in V} \deg(v)$$

It holds $p = \frac{m}{m_{max}}$ and, for simple graphs, also $\overline{\text{deg}} = \frac{2m}{n}$. Random graph in picture has 100 vertices and average degree 3.

Real-life networks are usually not random in the Erdős/Renyi sense. The analysis of their distributions gave a new view about their structure – Watts (Small worlds), Barabási (nd/networks, Linked).

Homomorphisms of graphs

Functions $(\varphi, \psi), \varphi: V \to V'$ and $\psi: L \to L'$ determine a *weak homomorphism* of graph G = (V, L) in graph H = (V', L') iff:

$$\forall u, v \in V \, \forall p \in L : (p(u:v) \Rightarrow \psi(p)(\varphi(u):\varphi(v)))$$

and they determine a (strong) homomorphism of graph G in graph H iff:

$$\forall u, v \in V \, \forall p \in L : (p(u, v) \Rightarrow \psi(p)(\varphi(u), \varphi(v)))$$

If φ and ψ are bijections and the condition hold in both direction we get an *isomorphism* of graphs G and H. We denote the weak isomorphism by $G \sim H$; and the (strong) isomorphism by $G \approx$ H. Itholds $\approx \subset \sim$.

An *invariant* of graph is called each graph characteristic that has the same value for all isomorphic graphs.

Clusters, clusterings, partitions, hierarchies

A nonempty subset $C \subseteq V$ is called a *cluster* (group). A nonempty set of clusters $\mathbf{C} = \{C_i\}$ forms a *clustering*.

Clustering $\mathbf{C} = \{C_i\}$ is a *partition* iff

$$\cup \mathbf{C} = \bigcup_{i} C_{i} = V \quad \text{in} \quad i \neq j \Rightarrow C_{i} \cap C_{j} = \emptyset$$

Clustering $\mathbf{C} = \{C_i\}$ is a *hierarchy* iff

 $C_i \cap C_j \in \{\emptyset, C_i, C_j\}$

Hierarchy $\mathbf{C} = \{C_i\}$ is *complete*, iff $\cup \mathbf{C} = V$; and is *basic* if for all $v \in \cup \mathbf{C}$ also $\{v\} \in \mathbf{C}$.

Contraction of cluster

Contraction of cluster C is called a graph G/C, in which all vertices of the cluster C are replaced by a single vertex, say c. More precisely:

G/C = (V', L'), where $V' = (V \setminus C) \cup \{c\}$ and L' consists of links from L that have both end-vertices in $V \setminus C$. Beside these it contains also a 'star' with the center c and: arc (v, c), if $\exists p \in L, u \in C : p(v, u)$; or arc (c, v), if $\exists p \in L, u \in C : p(u, v)$. There is a loop (c, c) in c if $\exists p \in L, u, v \in C : p(u, v)$.

In a network over graph G we have also to specify how are determined the values/weights in the shrunk part of the network. Usually as the sum or maksimum/minimum of the original values.

A subgraph H = (V', L') of a given graph G = (V, L) is a graph which set of links is a subset of set of links of $G, L' \subseteq L$, its vertex set is a subset of set of vertices of $G, V' \subseteq V$, and it contains all end-vertices of L'.

A subgraph can be *induced* by a given subset of vertices or links.

Cuts

The *link-cut* in network $\mathbf{N} = (V, L, w)$, $w : L \to \mathbb{R}$ at selected level t is a subnetwork $\mathbf{N}(t) = (V(L'), L', w)$ induced by the set of links

$$L' = \{e \in L : w(e) \ge t\}$$

where V(L') is the set of all endvertices of the links from L'.

The *vertex-cut* in network $\mathbf{N} = (V, L, p), p : V \to \mathbb{R}$ at selected level t is a subnetwork $\mathbf{N}(t) = (V', L(V'), p)$, induced by the set

$$V' = \{v \in V : p(v) \ge t\}$$

where L(V') is the set of links from L that have both endvertices in V'. To obtain interesting themes we consider only components of size at least k.

The values of thresholds t are determined by inspecting the distribution of weights/values and the distribution of component sizes.

Walks

length |s| of the walk *s* is the number of links it contains.

$$s = (j, h, l, g, e, f, h, l, e, c, b, a)$$

 $|s| = 11$

A walk is *closed* iff its initial and terminal vertex coincide.

If we don't consider the direction of the links in the walk we get a *semiwalk* or *chain*.

trail – walk with all links different *path* – walk with all vertices different *cycle* – closed walk with all internal
vertices different

A graph is *acyclic* if it doesn't contain any cycle.

Shortest paths

A shortest path from u to v is also called a *geodesic* from u to v. Its length is denoted by d(u, v). If there is no walk from u to v then $d(u,v) = \infty.$ d(j, a) = |(j, h, d, c, b, a)| = 5 $d(a, j) = \infty$ $\hat{d}(u,v) = \max(d(u,v), d(v,u))$ is a *distance*: $\hat{d}(v, v) = 0, \, \hat{d}(u, v) = \hat{d}(v, u),$ $\hat{d}(u,v) \le \hat{d}(u,t) + \hat{d}(t,v).$

The *diameter* of a graph equals to the distance between the most distant pair of vertices: $D = \max_{u,v \in V} d(u, v)$.

< X

Equivalence relations and Partitions

A relation R on V is an *equivalence* relation iff it is reflexive $\forall v \in V : vRv$, symmetric $\forall u, v \in V : uRv \Rightarrow vRu$, and transitive $\forall u, v, z \in V : uRz \land zRv \Rightarrow uRv$.

Each equivalence relation determines a partition into *equivalence classes* $[v] = \{u : vRu\}.$

Each partition C determines an equivalence relation $uRv \Leftrightarrow \exists C \in \mathbf{C} : u \in C \land v \in C.$

k-neighbors of v is the set of vertices on 'distance' k from v, $N^k(v) = \{u \in v : d(v, u) = k\}.$

The set of all k-neighbors, k = 0, 1, ... of v is a partition of V.

k-neighborhood of v, $N^{(k)}(v) = \{u \in v : d(v, u) \le k\}$.

Connectivity

Vertex u is *reachable* from vertex v iff there exists a walk with initial vertex vand terminal vertex u. Vertex v is *weakly connected* with vertex u iff there exists a semiwalk with vand u as its end-vertices. Vertex v is *strongly connected* with vertex u iff they are mutually reachable.

Weak and strong connectivity are equivalence relations.

Equivalence classes induce weak/strong *components*.

Most problems can be solved separately on each component and afterward these solutions combined into final solution.

A graph G = (V, L) is *bipartite* iff its set of vertices V can be partitioned into two sets V_1 and V_2 such that every link from L has one end-vertex in V_1 and the other in V_2 .

A weakly connected graph G is a *tree* iff it doesn't contain loops and semicycles of length at least 3.

If we shrink every strong component of a given graph into a vertex, delete all loops and identify parallel arcs the obtained *reduced* graph is acyclic. For every acyclic graph an *ordering* / *level* function $i : V \to \mathbb{N}$ exists s.t. $(u, v) \in A \Rightarrow i(u) < i(v)$.

... internal structure of strong components

Let d be the largest common divisor of lengths of closed walks in a strong component.
The component is said to be *simple*, iff d = 1; otherwise it is *periodical* with a period d.
The set of vertices V of strongly connected directed graph G = (V, R) can be partitioned into d clusters V₁, V₂, ..., V_d, s.t. for every arc (u, v) ∈ R holds u ∈ V_i ⇒ v ∈ V_{(imod d)+1}.

Bow-tie structure of the Web graph

Let $in_core(v)$ denotes the indegree core number of vertex v. Define $A = \{ v \in V : \operatorname{in_core}(v) \le 1 \},\$ $B = \{v \in V : \mathsf{out_core}(v) \le 1\}$ and $T = A \cap B, \ I = A \setminus T,$ $O = B \setminus T, \ S = V \setminus (A \cup B)$ then $\{I, S, T, O\}$ is the *bow-tie* partition of V. Subgraphs induced by sets I, T and Oare acyclic. Subgraph on S contains

all nontrivial strong components. Its reduced graph is also acyclic.

Biconnectivity

Vertices u and v are *biconnected* iff they are connected (in both directions) by two independent (no common internal vertex) paths.

Biconnectivity determines a partition of the set of links.

A vertex is an *articulation* vertex iff its deletion increases the number of weak components in a graph.

A link is a *bridge* iff its deletion increases the number of weak components in a graph.

k-connectivity

Vertex connectivity κ of graph G is equal to the smallest number of vertices that, if deleted, induce a disconnected graph or the trivial graph K_1 .

Link connectivity λ of graph *G* is equal to the smallest number of links that, if deleted, induce a disconnected graph or the trivial graph K_1 .

Whitney's inequality: $\kappa(G) \leq \lambda(G) \leq \delta(G)$.

Graph *G* is (*vertex*) k-connected, if $\kappa(G) \ge k$ and is link k-connected, if $\lambda(G) \ge k$.

Whitney / Menger theorem: Graph G is vertex/link k-connected iff every pair of vertices can be connected with k vertex/link internally disjoint (semi)walks.

Triangular and short cycle connectivities

In an undirected graph we call a *triangle* a subgraph isomorphic to K_3 .

A sequence $(T_1, T_2, ..., T_s)$ of triangles of **G** (vertex) triangularly connects vertices $u, v \in V$ iff $u \in T_1$ and $v \in T_s$ or $u \in T_s$ and $v \in T_1$ and $V(T_{i-1}) \cap V(T_i) \neq \emptyset$, i = 2, ..., s. It edge triangularly connects vertices $u, v \in V$ iff a stronger version of the second condition holds $E(T_{i-1}) \cap E(T_i) \neq \emptyset$, i = 2, ..., s.

Vertex triangular connectivity is an equivalence on V; and edge triangular connectivity is an equivalence on E.

Triangular network

Let **G** be a simple undirected graph. A *triangular network* $N_T(\mathbf{G}) = (V, E_T, w)$ determined by **G** is a subgraph $\mathbf{G}_T = (V, E_T)$ of **G** which set of edges E_T consists of all triangular edges of $E(\mathbf{G})$. For $e \in$ E_T the weight w(e) equals to the number of different triangles in **G** to which *e* belongs.

Triangular networks can be used to efficiently identify dense clique-like parts of a graph. If an edge e belongs to a k-clique in G then $w(e) \ge k - 2$.

Edge-cut at level 16 of triangular network of Erdős collaboration graph

Triangular connectivity in directed graphs

If the graph G is mixed we replace edges with pairs of opposite arcs. In the following let $\mathbf{G} = (V, A)$ be a simple directed graph without loops. For a selected arc $(u, v) \in A$ there are four different types of directed triangles: **cyclic**, **transitive**, **input** and **out**put.

(semi) cycle connectivity.

X

Islands

A set of vertices $C \subseteq V$ is a *vertex island* in network $\mathbf{N} = (V, L, p), p : V \rightarrow \mathbb{R}$ iff it induces a connected subgraph and the vertices from the island are 'higher' than the neighboring vertices

 $\max_{u \in N(C)} p(u) < \min_{v \in c} p(v)$

A set of vertices $C \subseteq V$ is a *link island* in network $\mathbf{N} = (V, L, w), w : L \to \mathbb{R}$ iff it induces a connected subgraph and the links inside the island are 'stronger related' among them than with the neighboring vertices – in \mathbf{N} there exists a spanning tree T over C such that

$$\max_{(u,v)\in L, u\notin C, v\in C} w(u,v) < \min_{(u,v)\in T} w(u,v)$$

31

... islands

We can also define *simple* islands with a single 'peak'.

Usually we are interested only in networks of size between k and K.

Island, also those with restricted sizes k..K, determine hierarhies over V.

There exist efficient algorithms to determine the islands.

X

Example – US patents

As an example, let us look at Nber network of US Patents. It has 3774768 vertices and 16522438 arcs (1 loop). We computed SPC weights in it and determined all (2,90)-islands. The reduced network has 470137 vertices, 307472 arcs and for different k: $C_2 = 187610$, $C_5 = 8859$, $C_{30} = 101$, $C_{50} = 30$ islands. Rolex

[1] [11] [21] [31] [41] [51] [61] [71]	0 190 17 12 1 2 0 0	139793 125 16 3 3 3 0 0	29670 104 8 7 4 3 0 1	9288 71 7 3 1 2 0 1	3966 47 13 5 0 1 0	1827 37 10 3 2 0 0 0	997 36 10 2 1 0 0 0	578 33 5 6 1 0 2 1	362 21 5 6 1 0 0 0	250 23 5 2 1 1 0 0 7
[81]	2	0	0	0	0	1	2	0	0	./

Main path and main island of Patents

Liquid crystal display

Table 1: Patents on the liquid-crystal display

Table 2: Patents on the liquid-crystal display

Table 3: Patents on the liquid-crystal display

2544659 Mar	3 1951	
		Dreyer. Dichroic light-polarizing sheet and the like and the
		formation and use thereof
2682562 Jun 2	29, 1954	Wender, et al. Reduction of aromatic carbinols
3322485 May 3	30, 1967	Williams. Electro-optical elements utilazing an organic
		nematic compound
3636168 Jan 1	18, 1972	Josephson. Preparation of polynuclear aromatic compounds
3666948 May 3	30, 1972	Mechlowitz, et al. Liquid crystal termal imaging system
		having an undisturbed image on a disturbed background
3675987 Jul 1	1, 1972	Rafuse. Liquid crystal compositions and devices
3691755 Sep 1	19, 1972	Girard. Clock with digital display
3697150 Oct 1	10, 1972	Wysochi. Electro-optic systems in which an electrophoretic- like or dipolar material is dispersed throughout a liquid
		crystal to reduce the turn-off time
3731986 May	8, 1973	Fergason. Display devices utilizing liquid crystal light modulation
3767289 Oct 2	23, 1973	Aviram, et al. Class of stable trans-stilbene compounds,
		some displaying nematic mesophases at or near room
		temperature and others in a range up to 100°C
3773747 Nov 2	20, 1973	Steinstrasser. Substituted azoxy benzene compounds
3795436 Mar	5, 1974	Boller, et al. Nematogenic material which exhibit the Kerr effect at isotropic temperatures
3796479 Mar 1	12, 1974	Helfrich, et al. Electro-optical light-modulation cell utilizing a nematogenic material which exhibits the Kerr
		effect at isotropic temperatures
3872140 Mar 1	18, 1975	Klanderman, et al. Liquid crystalline compositions and method
3876286 Apr	8 1975	Deutscher et al. Use of nematic liquid crystalline substances.
3881806 May	6 1975	Suzuki Electro-optical display device
3891307 Jun 2	24, 1975	Tsukamoto, et al. Phase control of the voltages applied to opposite electrodes for a cholesteric to nematic phase
0047077 14	1070	transition display
394/3/5 Mar (50, 1976	Gray, et al. Liquid crystal materials and devices
3954653 May	4, 1976	ramazaki. Liquid crystal composition naving high dielectric anisotropy and display device incorporating same
3960752 Jun	1, 1976	Klanderman, et al. Liquid crystal compositions
3975286 Aug 1	17, 1976	Oh. Low voltage actuated held effect liquid crystals
		compositions and method of synthesis
4000084 Dec 2	28, 1976	Hsieh, et al. Liquid crystal mixtures for electro-optical display devices
4011173 Mar	8, 1977	Steinstrasser. Modified nematic mixtures with positive dielectric anisotropy
4013582 Mar 2	22, 1977	Gavrilovic. Liquid crystal compounds and electro-optic devices incorporating them
4017416 Apr 1	12, 1977	Inukai, et al. P-cyanophenyl 4-alkyl-4'-biphenylcarboxylate, method for preparing same and liquid crystal compositions wing compared to the same same same same same same same sam
4029595 Jun 1	14, 1977	Ross, et al. Novel liquid crystal compounds and electro-optic devices incorporating them
4032470 Jun 2	28, 1977	Bloom, et al. Electro-optic device
4077260 Mar	7, 1978	Gray, et al. Optically active cyano-biphenyl compounds and liquid crystal materials containing them
4082428 Apr	4, 1978	Hsu. Liquid crystal composition and method

patent	date	author(s) and title
4083797	Apr 11, 1978	Oh. Nematic liquid crystal compositions
4113647	Sep 12, 1978	Coates, et al. Liquid crystalline materials
4118335	Oct 3, 1978	Krause, et al. Liquid crystalline materials of reduced viscosity
4130502	Dec 19, 1978	Eidenschink, et al. Liquid crystalline cyclohexane derivatives
4149413	Apr 17, 1979	Grav. et al. Optically active liquid crystal mixtures and
	1	liquid crystal devices containing them
4154697	May 15, 1979	Eidenschink, et al. Liquid crystalline hexahydroterphenyl
		derivatives
4195916	Apr 1, 1980	Coates, et al. Liquid crystal compounds
4198130	Apr 15, 1980	Boller, et al. Liquid crystal mixtures
4202791	May 13, 1980	Sato, et al. Nematic liquid crystalline materials
4229315	Oct 21, 1980	Krause, et al. Liquid crystalline cyclohexane derivatives
4261652	Apr 14, 1981	Grav. et al. Liquid crystal compounds and materials and
		devices containing them
4290905	Sep 22, 1981	Kanbe. Ester compound
4293434	Oct 6, 1981	Deutscher, et al. Liquid crystal compounds
4302352	Nov 24, 1981	Eidenschink, et al. Fluorophenylcyclohexanes, the preparation
		thereof and their use as components of liquid crystal dielectrics
4330426	May 18, 1982	Eidenschink, et al. Cyclohexylbiphenyls, their preparation and
1		use in dielectrics and electrooptical display elements
4340498	Jul 20, 1982	Sugimori. Halogenated ester derivatives
4349452	Sep 14, 1982	Osman, et al. Cyclohexylcyclohexanoates
4357078	Nov 2, 1982	Carr, et al. Liquid crystal compounds containing an alicyclic
		ring and exhibiting a low dielectric anisotropy and liquid
		crystal materials and devices incorporating such compounds
4361494	Nov 30, 1982	Osman, et al. Anisotropic cyclohexyl cyclohexylmethyl ethers
4368135	Jan 11, 1983	Osman. Anisotropic compounds with negative or positive
		DC-anisotropy and low optical anisotropy
4386007	May 31, 1983	Krause, et al. Liquid crystalline naphthalene derivatives
4387038	Jun 7, 1983	Fukui, et al. 4-(Trans-4'-alkylcyclohexyl) benzoic acid
		4 ["] -cyano-4 ["] -biphenylyl esters
4387039	Jun 7, 1983	Sugimori, et al. Trans-4-(trans-4'-alkylcyclohexyl)-cyclohexane
		carboxylic acid 4 ^m -cyanobiphenyl ester
4400293	Aug 23, 1983	Romer, et al. Liquid crystalline cyclohexylphenyl derivatives
4415470	Nov 15, 1983	Eidenschink, et al. Liquid crystalline fluorine-containing
		cyclonexylbiphenyls and dielectrics and electro-optical display
	D 0 4000	elements based thereon
4419263	Dec 6, 1983	Praetcke, et al. Liquid crystalline cyclohexylcarbonitrile
4400071	D 07 1000	derivatives
4422951	Dec 27, 1983	Sugimori, et al. Liquid crystal benzene derivatives
4455443	Jun 19, 1984	Takatsu, et al. Nematic nalogen Compound
4406712	Jun 26, 1984	Unristie, et al. Bismaleimide triazine composition
4400770	JUL 17, 1984	Feurzinka, et al. Liquid crystal mixture
4472293	5ep 18, 1984	Sugmori, et al. righ temperature liquid crystal substances of
4479509	Sop 19 1094	Tolesten, et al. Nometia liquid erestalling compounds
4472092	Oct 20, 1984	Takatsu, et al. Nematic liquid crystalline compounds
4502074	Mar 5, 1984	Sugimori et al. High temperature liquid erustalline ester
4002974	Mai 3, 1983	sugmon, et al. righ temperature liquid-crystalline ester
4510060	Apr 0 100F	Fidencehink et al. Cueleberrane derivatives
4010009	Apr 9, 1985	Eldenschink, et al. Cyclonexane derivatives

patent	date	author(s) and title
4514044	Apr 30, 1985	Guniima, et al. 1-(Trans-4-alkylcyclohexyl)-2-(trans-4'-(p-sub
		stituted phenyl) cyclobeyyl)ethane and liquid crystal mixture
4526704	Jul 2, 1985	Petrzilka, et al. Multiring liquid crystal esters
4550981	Nov 5, 1985	Petrzilka, et al. Liquid crystalline esters and mixtures
4558151	Dec 10, 1985	Takatsu, et al. Nematic liquid crystalline compounds
4583826	Apr 22, 1986	Petrzilka et al. Phenylethanes
4621901	Nov 11 1986	Petrzilka et al. Novel liquid crystal mixtures
4630896	Dec 23, 1986	Petrzilka et al. Benzonitriles
4657695	Apr 14 1987	Saito et al Substituted pyridazines
4659502	Apr 21 1987	Fearon et al. Ethane derivatives
4695131	Sep 22, 1987	Balkwill et al. Disubstituted ethanes and their use in liquid
1000101	00p 22, 1001	crystal materials and devices
4704227	Nov 3 1987	Krause et al Liquid crystal compounds
4709030	Nov 24 1987	Petrzilka et al. Novel liquid crystal mixtures
4710315	Dec 1 1987	Schad et al. Anisotropic compounds and liquid crystal
1110010	Dec 1, 1001	mixtures therewith
4713197	Dec 15 1987	Fidenschink et al Nitrogen-containing heterocyclic compounds
4719032	Jan 12 1988	Wachtler et al. Cycloheyane derivatives
4721367	Jan 26, 1988	Yoshinaga et al Liquid crystal device
4752414	Jun 21 1988	Fidenschink et al. Nitrogen-containing heterocyclic compounds
4770503	Sep 13, 1988	Buchecker et al. Liquid crystalline compounds
4795579	Ian 3 1989	Vauchier et al. 2.2'-diffuoro-4-alkovy-4'-hydroxydiphenyls and
1100010	0000 0, 1000	their derivatives their production process and
		their use in liquid crystal display devices
4797228	Jan 10, 1989	Goto et al. Cycloheyane derivative and liquid crystal
4151220	5an 10, 1505	composition containing same
4820830	Apr 11 1080	Krause et al. Nitrogen-containing haterocyclic esters
4832462	May 23, 1080	Clark et al. Liquid crystal devices
4877547	Oct 31 1080	Weber et al Liquid crystal display element
4057340	Sep 18 1900	Clere at al. Active matrix screen for the color display of
1001010	bep 10, 1000	television pictures, control system and process for producing
		said screen
5016088	May 21 1001	Jimura Liquid crystal display device with a birefringent
0010300	May 21, 1551	companyator
5016080	May 21 1001	Okada Liquid crystal element with improved contrast and
0010303	May 21, 1551	brightness
5122295	Jun 16 1992	Weber et al. Matrix liquid crystal display
5124824	Jun 23 1002	Kozaki et al. Liquid crystal display device comprising a
0124024	5 un 20, 1552	retardation compensation laver having a maximum principal
		refractive index in the thickness direction
5171469	Dec 15 1992	Hittich et al Liquid-crystal matrix display
5283677	Feb 1 1004	Sagawa et al. Liquid crystal display with ground regions
0200011	100 1, 1001	between terminal groups
5308538	May 3 1994	Weber et al. Supertwist liquid-crystal display
5374374	Dec 20, 1994	Weber et al. Supertwist liquid-crystal display
5543077	Aug 6 1996	Rieger et al Nematic liquid-crystal composition
5555116	Sep 10, 1996	Ishikawa et al. Liquid crystal display having adjacent
0000110	Sep 10, 1990	electrode terminals set equal in length
5683624	Nov 4 1007	Sakiguchi at al Liquid crystal composition
5855814	Ian 5 1000	Materia at al. Liquid crystal compositions and liquid crystal
0000014	5an 0, 1999	display elemente

Dense groups

Several notions were proposed in attempts to formally describe dense groups in graphs.

Clique of order k is a maximal complete subgraph (isomorphic to K_k), $k \ge 3$.

s-plexes, LS sets, lambda sets, cores, ...

For all of them, except for cores, it turned out that they are difficult to detemine.

Cores and generalized cores

The notion of core was introduced by Seidman in 1983. Let $\mathbf{G} = (V, E)$ be a graph. A subgraph H = (W, E|W) induced by the set W is a *k*-core or a core of order k iff $\forall v \in W : \deg_H(v) \ge k$, and H is a maximal subgraph with this property. The core of maximum order is also called the *main* core.

The *core number* of vertex v is the highest order of a core that contains this vertex. The degree deg(v) can be: in-degree, out-degree, in-degree + out-degree, etc., determining different types of cores.

Properties of cores

From the figure, representing 0, 1, 2 and 3 core, we can see the following properties of cores:

- The cores are nested: $i < j \implies H_j \subseteq H_i$
- Cores are not necessarily connected subgraphs.

An efficient algorithm for determining the cores hierarchy is based on the following property:

If from a given graph $\mathbf{G} = (V, E)$ we recursively delete all vertices, and edges incident with them, of degree less than k, the remaining graph is the k-core.

... Properties of cores

The cores, because they can be determined very efficiently, are one among few concepts that provide us with meaningful decompositions of large networks. We expect that different approaches to the analysis of large networks can be built on this basis. For example: we get the following bound on the chromatic number of a given graph G

 $\chi(\mathbf{G}) \le 1 + \operatorname{core}(\mathbf{G})$

Cores can also be used to localize the search for interesting subnetworks in large networks since: if it exists, a k-component is contained in a k-core; and a k-clique is contained in a k-core.

Generalized cores

The notion of core can be generalized to networks. Let $\mathbf{N} = (V, E, w)$ be a network, where $\mathbf{G} = (V, E)$ is a graph and $w : E \to \mathbb{R}$ is a function assigning values to edges. A *vertex property function* on \mathbf{N} , or a *p*-function for short, is a function $p(v, U), v \in V, U \subseteq V$ with real values. Let $N_U(v) = N(v) \cap U$. Besides degrees, here are some examples of *p*-functions:

$$p_{S}(v,U) = \sum_{u \in N_{U}(v)} w(v,u), \text{ where } w : E \to \mathbb{R}_{0}^{+}$$

$$p_{M}(v,U) = \max_{u \in N_{U}(v)} w(v,u), \text{ where } w : E \to \mathbb{R}$$

$$p_{k}(v,U) = \text{ number of cycles of length } k \text{ through vertex } v \text{ in } (U,E|U)$$
The subgraph $H = (C, E|C)$ induced by the set $C \subseteq V$ is a *p*-core at level $t \in \mathbb{R}$ iff $\forall v \in C : t \leq p(v,C)$ and C is a maximal such set.

Generalized cores algorithm

The function p is *monotone* iff it has the property

$$C_1 \subset C_2 \Rightarrow \forall v \in V : (p(v, C_1) \le p(v, C_2))$$

The degrees and the functions p_S , p_M and p_k are monotone. For a monotone function the *p*-core at level *t* can be determined, as in the ordinary case, by successively deleting vertices with value of *p* lower than *t*; and the cores on different levels are nested

$$t_1 < t_2 \Rightarrow H_{t_2} \subseteq H_{t_1}$$

The *p*-function is *local* iff $p(v, U) = p(v, N_U(v))$.

The degrees, p_S and p_M are local; but p_k is **not** local for $k \ge 4$. For a local p-function an $O(m \max(\Delta, \log n))$ algorithm for determining the p-core levels exists, assuming that $p(v, N_C(v))$ can be computed in $O(\deg_C(v))$.

</>
</>
★