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Abstract

Short cycle connectivity is a generalization of ordinary connectiv-
ity. Instead of by a path (sequence of edges), two vertices have to
be connected by a sequence of short cycles, in which two consecutive
cycles have at least one common vertex. If all consecutive cycles in
the sequence share at least one edge, we talk about edge short cycle
connectivity. Short cycle connectivity can be extended to directed
graphs (cyclic and transitive connectivity).

It is shown that the short cycle connectivity is an equivalence rela-
tion on the set of vertices, while the edge/arc short cycle connectivity
components determine an equivalence relation on the set of edges/arcs.
Some additional properties of these relations are also presented.

The related notion of short cycle networks provides us with a tool
for identification of dense parts of graphs with applications in the
design of algorithms and social network analysis (hierarchies, Gra-
novetter’s strong and weak ties). For further generalization we can
also consider connectivity by small cliques or other families of graphs.

1 Introduction

The idea of connectivity by short cycles emerges in different contexts. In
hierarchical decompositions of networks the long cycles can be violations of
the assumed hierarchical structure. The symmetric connectivity from paper
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[5] is essentially the connectivity by 2-cycles. Edges/arcs belonging to short
cyclic components can be considered as ‘strong’ ties [4]; ‘weak’ ties linking an
individual to other ‘groups’ (components) are important for her/his success
in accessing different resources (job, information, etc.). In [1] we were looking
at subgraphs formed by complete triads – triangles. Triangular connectivity
also appears to be important in different applications [10, 13, 6, 14].

The next stimulus was a reference in Scott [12] to the early work of M.
Everett on this subject [7, 8, 9]. It seems that his ideas can be elaborated to
provide a powerful and efficient tool for analysis of large networks.

In the paper we provide a formal setting for these notions and present
some of their basic properties. We first consider the short cycle connectivity
in undirected graphs and afterward extend our discussion to directed graphs.

2 k-gonal connectivity in undirected graphs

Let K denote the connectivity relation and B denote the biconnectivity rela-
tion in a given simple undirected graph G = (V , E). Let n = |V| denote the
number of vertices and let m = |E| denote the number of edges.

Vertex u ∈ V is in relation K with vertex v ∈ V , uKv, if and only if u = v
or there exists a path in G from u to v.

Vertex u ∈ V is in relation B with vertex v ∈ V , uBv, if and only if u = v
or there exists a cycle in G containing u and v.

We call a k-gone a subgraph isomorphic to a k-cycle Ck and a (k)-gone
a subgraph isomorphic to Cs for some s, 3 ≤ s ≤ k. A subgraph H of G is
k-gonal, if each of its vertices and each of its edges belong to at least one
(k)-gone in H.

Definition 1 A sequence (C1, C2, . . . , Cs) of (k)-gons of G ( vertex) k-gonally
connects a vertex u ∈ V with a vertex v ∈ V, if and only if

1. u ∈ V(C1),

2. v ∈ V(Cs), and

3. V(Ci−1) ∩ V(Ci) 6= ∅ for i = 2, . . . , s.

Such a sequence is called a ( vertex) k-gonal chain, see Figure 1. Vertex
u ∈ V is ( vertex) k-gonally connected with vertex v ∈ V, uKkv, if and
only if u = v or there exists a (vertex) k-gonal chain that (vertex) k-gonally
connects vertex u with vertex v.
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Figure 1: 5-gonal chain from u to v

Theorem 1 The relation Kk is an equivalence relation on the set of vertices
V.

Proof: Reflexivity follows directly from the definition of the relation Kk.
Since the reverse of a k-gonal chain from u to v is a k-gonal chain from v

to u, the relation Kk is symmetric.
Transitivity. Let u, v and z be such vertices, that uKkv and vKkz. If

these vertices are not pairwise different, the transitivity condition is trivially
true. Assume now that they are pairwise different. Because of uKkv and
vKkz there exist (vertex) k-gonal chains from u to v and from v to z. Their
concatenation is a (vertex) k-gonal chain from u to z. Therefore also uKkz.
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Subgraphs induced by Kk-equivalence classes are called (vertex ) k-gonal
connectivity components. A k-gonal connectivity component is trivial if and
only if it consists of a single vertex.

Theorem 2 The sets of vertices of maximal connected k-gonal subgraphs are
exactly nontrivial (vertex) k-gonal connectivity classes.

Proof: Let u and v be any vertices belonging to a connected k-gonal
subgraph. If u = v, it is obvious that uKkv. Otherwise there exists a path
π = u, e1, z1, e2, z2, e3, z3, . . . , es, v from u to v. Because the subgraph is k-
gonal, each edge ei on this path belongs to at least one (k)-gone Ci in this
subgraph. For the obtained k-gonal chain (C1, C2, . . . , Cs) it holds:

• ei ∈ E(Ci), i = 1, . . . , s

• u ∈ V(C1), v ∈ V(Cs)

• zi−1 ∈ V(Ci−1) ∩ V(Ci), i = 2, . . . , s
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Therefore uKkv. So all vertices of any (also maximal) connected k-gonal
subgraph belong to the same component of the relation Kk.

Now, let u and v be two different vertices of a nontrivial Kk-component
C ⊆ V . Because u is in relation Kk with v, there exists a k-gonal chain from
u to v. It is obvious that all vertices of a k-gonal chain belong to the same
maximal connected k-gonal subgraph, so also u and v. But u and v were any
two different vertices of C, so all vertices of a nontrivial k-gonal connectivity
component belong to the same maximal connected k-gonal subgraph. 2

Note that nontrivial (vertex) k-gonal connectivity components are not
necessary k-gonal subgraphs and therefore they are not maximal connected
k-gonal subgraphs. We can see this from the example in Figure 2, where all
vertices are in the same triangular connectivity component, but the graph is
not triangular because of the edge e, which does not belong to a triangle.

Figure 2: This graph is not triangular

Definition 2 In the k-gonal network Nk(G) = (V , E , wk) on graph G =
(V , E) the weight wk(e) of an edge e ∈ E is equal to the number of different
(k)-gons in G to which e belongs. It determines a subgraph Gk = (V , Ek) of
G, where e ∈ Ek if and only if wk(e) > 0.

Theorem 3 Kk(G) = K(Gk)

Proof: Let uKkv hold in graph G. If u = v, it is also true that uKv in
graph Gk. If the vertices u and v are different, there exists (vertex) k-gonal
chain in G from u to v. Each edge in this chain belongs to at least one (k)-
gone, so the whole chain is in Gk. So u and v are connected in Gk or with
other words uKv in Gk. Kk(G) ⊆ K(Gk).

Let uKv hold in graph Gk. Then a path exists from u to v in graph
Gk. Because Gk is k-gonal, each edge on this path belongs to at least one
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(k)-gone, so we can construct a k-gonal chain from u to v in Gk. Because Gk

is a subgraph of G, this chain is also a chain in G, which means that uKkv
holds in graph G. K(Gk) ⊆ Kk(G). 2

The last theorem has the following practical application: To determine
the equivalence classes of the relation Kk, we can first determine its k-gonal
subgraph Gk and find its connected components afterward.

To compute the weight of the edge e we have to count to how many (k)-
gons it belongs. We are still working on development of an efficient algorithm
for this task for very large sparse graphs and k ≤ 5.

The weights wk can be used to identify dense parts of a given graph. For
example, for a selected edge e in r-clique

wk(e) ≥
k∑

i=3

(r − 2)(r − 3) · · · (r − i + 1)

The Everett’s k-decomposition [7, 8, 9] of a given undirected graph G =
(V , E) is a partition {C1, ..., Cp,B1, ...,Bq} of the set of edges E , where Ci are
k-gonal blocks – edge sets of maximal k-gonally connected subgraphs, and
Bj are bridges – edge sets of connected components of E \ ∪Ci.

A procedure to determine Everett’s decomposition is as follows: First de-
termine the k-gonal subgraph Gk. The edge sets of its connected components
are by Theorem 3 just the sets Ci. Finally determine the bridges Bi – the
connected components on the edge set E \ ∪Ci.

Note that for i 6= j hold V(Ci) ∩ V(Cj) = ∅ and V(Bi) ∩ V(Bj) = ∅.

Definition 3 A sequence (C1, C2, . . . , Cs) of (k)-gons of G edge k-gonally con-
nects a vertex u ∈ V with a vertex v ∈ V, if and only if

1. u ∈ V(C1),

2. v ∈ V(Cs), and

3. E(Ci−1) ∩ E(Ci) 6= ∅ for i = 2, . . . , s.

Such a sequence is called an edge k-gonal chain, see Figure 3. Vertex u ∈ V
is edge k-gonally connected with vertex v ∈ V, uLkv, if and only if u = v or
there exists an edge k-gonal chain that edge k-gonally connects vertex u with
vertex v.
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Figure 3: Edge 5-gonal chain from u to v

In the biconnected graph in Figure 4 the vertices u in v are edge trian-
gularly connected, while the vertices x and z are not. The relation L3 is not
transitive on vertices : xL3v, vL3z, but not xL3z.

Figure 4: Biconnected triangular graph

Theorem 4 The relation Lk determines an equivalence relation on the set
of edges E.

Proof: Let the relation ∼ on E be defined as follows: e ∼ f , if and only if
e = f or there exists an edge k-gonal chain (C1, C2, . . . , Cs), where e ∈ E(C1)
and f ∈ E(Cs).

Reflexivity of ∼ follows from its definition.
Symmetry of ∼ follows readily. Let e and f be two edges from E such that

e ∼ f . Then an edge k-gonal chain (C1, C2, . . . , Cs) from e to f exists. The
reverse (Cs, . . . , C2, C1) is an edge k-gonal chain from f to e. Hence f ∼ e.

And transitivity. Let e, f and g be edges, such that e ∼ f and f ∼ g.
Then there exists an edge k-gonal chain from e to f and an edge k-gonal
chain from f to g. The concatenation of these two chains is an edge k-gonal
chain from e to g (the (k)-gons in the contact of the chains both contain the
edge f , so their intersection is not empty). Therefore e ∼ g. 2

Theorem 5 Let Bk = B ∩Kk. In a graph G hold:

a. Kk ⊆ K b. Lk ⊆ Bk
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and for i < j also:

c. Ki ⊆ Kj e. Bi ⊆ Bj

d. Li ⊆ Lj

Proof: Most properties are simple consequences of their definitions. Let
us prove the property b.

Let u and v be vertices, such that uLkv. If u = v, it is also uBv and uKkv
by definition, from which it follows that uBkv. If the vertices are different,
there exists an edge k-gonal chain from u to v. But since each edge k-gonal
chain is also a vertex k-gonal chain (if two (k)-gons have a common edge,
they also have a common vertex), uKkv holds. The subgraph in the form of
an edge k-gonal chain is biconnected [3], uBv. Therefore uBkv. 2

The relationships from theorem 5 can be presented by a diagram:

B ⊆ K

⊆
..
.

⊆
..
.
⊆

⊆
..
.
⊆

Lk ⊆ Bk ⊆ Kk

⊆ ⊆ ⊆

Lk−1 ⊆ Bk−1 ⊆ Kk−1

..
.
⊆

..
.
⊆

..
.
⊆

3 Cyclic k-gonal connectivity in directed graphs

Let G = (V ,A) be a simple directed graph. We shall give special attention
to two special types of Everett’s semicycles [7, 8], see Figure 5, related to
the selected base arc a(u, v) ∈ A: cycles (an arc with a feed-back path) and
transitive semicycles (an arc with a reinforcement path) of length at most k.
The selected arc a of transitive semicycle is called a transitive arc.

For cyclic (k)-gons we define (similarly as for undirected graphs):

Definition 4 A sequence (C1, C2, . . . , Cs) of cycles of length at most k and at
least 2 of G ( vertex) cyclic k-gonally connects a vertex u ∈ V with a vertex
v ∈ V, if and only if

1. u ∈ V(C1),
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transitive
reinforcement

Figure 5: Semicycles on an arc

2. v ∈ V(Cs), and

3. V(Ci−1) ∩ V(Ci) 6= ∅ for i = 2, . . . , s.

Such a sequence is called a ( vertex) cyclic k-gonal chain. Vertex u ∈ V is
( vertex) cyclic k-gonally connected with vertex v ∈ V, uCkv, if and only
if u = v or there exists a (vertex) cyclic k-gonal chain that (vertex) cyclic
k-gonally connects vertex u with vertex v.

Definition 5 A sequence (C1, C2, . . . , Cs) of cycles of length at most k and at
least 2 of G arc cyclic k-gonally connects a vertex u ∈ V with a vertex v ∈ V,
if and only if

1. u ∈ V(C1),

2. v ∈ V(Cs), and

3. A(Ci−1) ∩ A(Ci) 6= ∅ for i = 2, . . . , s.

Such a sequence is called an arc cyclic k-gonal chain. Vertex u ∈ V is arc
cyclic k-gonally connected with vertex v ∈ V, uDkv, if and only if u = v
or there exists an arc cyclic k-gonal chain that arc cyclic k-gonally connects
vertex u with vertex v.

Between Ck and Dk similar relations hold as for Kk and Lk.

Theorem 6 A weakly connected cyclic k-gonal graph is also strongly con-
nected.
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Proof: Take any pair of vertices u and v. Since G is weakly connected there
exists a semipath connecting u and v. Each arc on this semipath belongs to
at least one (k)-cycle. Therefore its end-points are connected by a path in
opposite direction – we can construct a walk from u to v and also a walk
from v to u. 2

Theorem 7 The cyclic k-gonal connectivity Ck is an equivalence relation
on the set of vertices V.

Proof: The proof is similar to the proof of Theorem 1. 2

An arc is cyclic if and only if it belongs to some cycle (of any length) in
the graph G = (V ,A). The cyclic arcs that do not belong to some (k)-cycle
are called k-long (range) arcs [11].

Theorem 8 If the graph G = (V ,A) does not contain k-long arcs then its
cyclic k-gonal reduction G/Ck = (V/Ck,A∗), where for X, Y ∈ V/Ck :
(X, Y ) ∈ A∗ ⇐⇒ ∃u ∈ X∃v ∈ Y : (u, v) ∈ A, is an acyclic graph.

Proof: Suppose that cyclic k-gonal reduction of graph G is not acyclic.
Then it contains a cycle C∗, which can be extended to a cycle C of graph G.
Let a∗ be any arc of C∗ and let a be the corresponding arc of C. Because
the end-points of a∗ are different, the end-points of a belong to two different
components of the relation Ck. So a does not belong to any cyclic (k)-
gone. But a is cyclic (it belongs to cycle C), so it is a k-long arc. This is
a contradiction. Therefore, the cyclic k-gonal reduction of graph G must be
acyclic. 2

This theorem tells us that the ‘global structure’ of a graph without k-long
arcs is essentially acyclic – hierarchical. From this proof we also see how to
identify the k-long arcs. They are exactly the arcs that are reduced to cyclic
arcs in G/Ck.

Theorem 9 The relation Dk determines an equivalence relation on the set
of arcs A.

Proof: The proof is similar to the proof of Theorem 4. 2

Definition 6 The vertices u, v ∈ V are ( vertex) strongly k-gonally con-
nected, uSkv, if and only if u = v or there exists strongly connected k-gonal
subgraph that contains u and v.
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It is easy to see that Dk ⊆ Ck ⊆ Sk. The relationships between these
relations can be presented by the following diagram, where S is the strong
connectivity relation.

S

⊆
..
.

⊆
..
.

⊆
..
.
⊆

Dk ⊆ Ck ⊆ Sk
⊆ ⊆ ⊆

Dk−1 ⊆ Ck−1 ⊆ Sk−1

..
.
⊆

..
.
⊆

..
.
⊆

We can define three networks that can provide us with more detailed
picture about the graph structure:

• Feedback network NF = (V ,A, wF ) where wF (a) is the number of dif-
ferent (k)-cycles containing the arc a.

• Transitive network NT = (V ,A, wT ) where wT (a) is the number of
different transitive (k)-semicycles containing the arc a as the transitive
arc (shortcut).

• Support network NS = (V ,A, wS) where wS(a) is the number of dif-
ferent transitive (k)-semicycles containing the arc a as a nontransitive
arc.

Theorem 10 Ck(G) = S(GF ), where GF = (V ,AF ) and AF = {a ∈ A :
wF (a) > 0}.
Proof: Let uCkv hold in graph G. If u = v, it is also true that uSv holds
in graph GF . If the vertices are different, a cyclic k-gonal chain from u to v
exists in G. Each arc in this chain belongs to at least one (k)-cycle, so the
whole chain is in GF . Vertices u and v are mutually reachable by arcs of this
chain, so uSv holds in GF .

Let uSv hold in graph GF . Then a walk from u to v exists in graph
GF . Because GF is cyclic k-gonal, each arc on this walk belongs to at least
one (k)-cycle, so we can construct a cyclic k-gonal chain from u to v in GF .
Because GF is subgraph of G, this chain is also in G, which means that uCkv
holds in graph G. 2
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4 Transitivity

Let R(G) denote the reachability relation in a given directed graph G =
(V ,A). Vertex v is reachable from vertex u, uRv, if and only if u = v or a
walk from u to v exists.

Theorem 11 If we remove all (or some) arcs belonging to a triangularly
transitive path π (all arcs of π are triangularly transitive) from a graph G =
(V ,A) the reachability relation does not change: R(G) = R(G \ A(π)).

Proof: Because the graph G \ A(π) is a subgraph of G, it is obvious that
R(G \ A(π)) ⊆ R(G). To prove the converse let a be any arc on the trian-
gularly transitive path π. Because of transitivity of the arc a, its terminal
vertex is also reachable from its initial vertex by two supporting arcs. We
only have to check that none of them belongs to the path π, so it is not
deleted. Because the arc a and each its supporting arc have a common ver-
tex, the only way to be on the same path is to be consecutive arcs. But this
is impossible because of their directions. This means that any walk on G can
be transformed into a walk on G \A(π) by replacing arcs belonging to A(π)
with the corresponding supporting pairs. Therefore also the converse is true:
R(G) ⊆ R(G \ A(π)). 2

But we cannot remove all triangularly transitive arcs. The counter-
example is presented in Figure 6, where we have a directed 6-cycle whose
vertices are connected by arcs with additional vertex in its center. The cen-
tral vertex is reachable from anywhere. All the arcs from the cycle to the
central vertex are transitive. If we remove them all, the central vertex is not
reachable any more.

Figure 6: Graph in which all triangularly transitive arcs cannot be removed

The theorem also cannot be generalized to arbitrary transitive paths.
The counter-example in Figure 7 presents a graph with a transitive path
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u− x− y − v. If we remove this path, vertex v is not reachable from vertex
u any more.

Figure 7: Graph in which a transitive path cannot be removed

Let Tk denote the k-transitive reachability relation in a given directed
graph G = (V ,A).

Definition 7 Vertex v is k-transitively reachable from vertex u, uTkv, if
and only if u = v or a walk from u to v exists in which each arc is k-
transitive – it is a base (shortcut arc) of some transitive semicycle of length
at most k.

The vertices u and v are mutually k-transitively reachable, if vertex u is
k-transitively reachable from vertex v and vertex v is k-transitively reachable
from vertex u. We denote this relation by T̂k

uT̂kv ⇔ uTkv ∧ vTku

Theorem 12 The relation of mutual k-transitive reachability T̂k = Tk∩T−1
k

is an equivalence relation on the set of vertices V .

Proof: It is well known that if Q is a reflexive and transitive relation
then Q̂ = Q∩Q−1 is an equivalence relation. The relation Tk is reflexive by
definition, so we have only to prove that it is also transitive.

Let u, v and w be such vertices that uTkv and vTkw. If these vertices are
not pairwise different, the transitivity condition is trivially true. Otherwise
a walk from u to v and a walk from v to w exist, in which every arc is k-
transitive. Their concatenation is a walk from u to w, in which every arc is
k-transitive, so uTkw holds. 2
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5 Further generalizations

Till now we were considering the connectivity by triangles and other short
cycles. Intersections of two consecutive cycles in the corresponding chains
contained at least one vertex (vertex connectivity) or at least one edge/arc
(edge/arc connectivity). This can be generalized to other families of graphs.

Definition 8 Let IH and IH0 be two families of graphs. A sequence (H1,H2,
. . . ,Hs) of subgraphs of G (IH, IH0) connects a vertex u ∈ V with a vertex
v ∈ V, if and only if

1. u ∈ V(H1),

2. v ∈ V(Hs),

3. Hi ∈ IH for i = 1, . . . , s, and

4. Hi−1 ∩Hi ⊇ H ∈ IH0 for i = 2, . . . , s.

Example: For r < k we can define (k, r)-clique connectivity: IH =
{Kr+1, Kr+2, . . . , Kk}, IH0 = {Kr}

All the types of connectivity introduced in this paper are special cases of
the generalized connectivity:

Kk = ({C3, . . . , Ck}, {K1}) connectivity

Lk = ({C3, . . . , Ck}, {K2}) connectivity

For the generalized connectivity similar theorems hold as for k-gonal con-
nectivity.

6 Conclusion

In the paper we introduced different kinds of short cycle connectivities and
proved their basic properties. The corresponding networks provide us with
a powerful tool for identification of dense parts of graph with applications in
the design of algorithms and in social network analysis.

The support for triangular connectivities and networks is provided in
Pajek – program for analysis and visualization of large networks [2].
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comments and useful suggestions. Special thanks to Martin G. Everett for
copies of his papers on the subject.

This work was supported by the Ministry of Education, Science and Sport
of Slovenia, Project 0512–0101.

The paper was presented at The Fifth Slovenian International Conference
On Graph Theory, June 22–27, 2003, Bled, Slovenia.

References

[1] V. Batagelj and A. Mrvar, A subquadratic triad census algorithm for
large sparse networks with small maximum degree, Social Networks 23
(2001) 237–243.

[2] V. Batagelj and A. Mrvar, Pajek - analysis and visualization of large
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