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Abstract

We attempt to develop further the blockmodeling of networks, so as better to
capture the network structure. For this purpose a richer structure than ordinary
(valued) graphs has to be used for a model. Such structures are valued graphs with
typified (complete, dominant, regular, ...) connections. Based on the proposed
formalization, the blockmodeling is cast as an optimization problem.
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1 Introduction

The paper is an elaboration of the following two basic observations:

e in blockmodeling we have two basic subproblems:

— partitioning of units — determining the classes (clusters) that form the vertices
in a model;
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— determining the links in a model (and their values);

e description of a model as a (valued) graph is often unprecise. For example, how does
one denote the father—sons connection? A richer structure is needed for a model to
be able to describe the network structure properly.

In this paper we propose a generalization of blockmodeling which enables us to capture
better the network structure. It unifies and combines different notions of equivalences
(structural, regular, ...), which can be simultaneously applied to the same network. The
paper deals mainly with formal and computational aspects of the proposed approach.
A discussion of its methodological aspects and its relations to standard blockmodeling
methods is given in Doreian, Batagelj and Ferligoj (1994).

2 Graphs and networks

A graph is an ordered triple G = (V, E, A) where V, E and A are pairwise disjoint sets.
The set V' is a vertez-set of graph G; E is the set of edges (undirected lines), and A is the
set of arcs (directed lines) of graph G. Sets E and A can also be empty. If A = (), the
graph G is undirected; and it is directed if E = (). To each line from L = E U A belongs
a pair of vertices — its ends. In the case of an arc one vertex is its initial vertex, and the
other vertex is its terminal vertex.

That the edge e has end vertices u and v we write as e(u:v), or equivalently e(v: u).
Similarly, a(u,v) says that u is the initial and v is the terminal vertex of arc a. A line
p € L joins its end vertices, and an arc a € A joins its initial vertex to its terminal vertex.
When both ends of a line are equal we call it a loop. A vertex which is not an end of any
line is called #solated.

We extend our notation for edges and arcs to all lines by: let p € L, then
p(u,v) = (p € EAp(u:v))V (p € ANp(u,v))
line p joins vertex u to vertex v, and
p(u:v) = p(u,v) V p(v, u)
line p joins vertices u and v.
We shall use the following abbreviation:
ulv=3dp e L :p(u,v)
which essentially defines the adjacency relation. For ) C X, Y C V we also define a block
LX,)Y)={peL:3r e XqyeY :p(x,y)}
and a complete block

KX)Y)={(z:y):ze X,yeY}U{(z,y) ;2 € X,y €Y}
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Figure 1: Network graph: Student Government — discussion, recall

A block of the form L(X, X) is called a diagonal block, and a block of the form L(X,Y), XN
Y = (), an off-diagonal block.

A graph is simple iff each pair of adjacent vertices is either joined by an edge, or by an
arc, or by a pair of arcs of opposite directions, or by a directed loop. In the following we
shall assume all graphs directed and simple.

A (simple) network is an ordered triple N' = (V, L, v) where

e (V, L) is a simple graph,

e v: L — S assigns values to lines, and S is the set of possible values.

In this context, the set of vertices V' is usually called the set of units. When the values of
lines are not given we assume the ‘default’ values

_J1 zLy
v(z.y) = {0 otherwise

An example of a network is presented on Figure 1. For a detailed description and
the complete data see Hlebec (1993). The units are members of Student Government at
University of Ljubljana in May 1992 (a — advisor, m — minister, pm — prime minister),
and the relation is determined by the answers (based on the respondent’s recall) to the
question:



Table 1: Types of connection

null nul(X,Y; L)
complete com(X,Y; L)
row-dominant | rdo(X,Y; L)

LX,Y)=10
Vee XVyeY : (v #y=xLy)
dre XVyeY :(x#y= zLy)

col-dominant | cdo(X,Y; L) rdo(Y, X; L)
row-regular rre(X,Y; L) Ve XdyeY ::xLy
col-regular cre(X,Y; L rre(Y, X; L7Y)

)
regular reg(X,Y; L)
row-functional | rfn
col-functional | c¢fn(X,Y; L

cre(X,Y; L) Arre(X,Y; L)
VyeYdlre X :xLy
Vee XdlyeY :xLy

1 1 T 1 | 1 1

“Of the members and advisors of the Student Government, whom do you (most
often) informally talk with?”

3 Types of connection

Two sets of vertices X, Y C V can be related in different ways. We describe these types of
connection by predicates, where X is considered as the ego-set (see Table 1 and Figure 2).

Let T denote a connection type predicate. These predicates have several characteristic
properties

property T

T(X1,Y1) ANT(X,Ys) = T(X;U Xy, Y1 UY,) | reg, rre, cre
T(X1,Y)ANT(X5,Y)=T(X1UX,,Y) com, rfn, nul, (reg, rre, cre)
TX,)Y1)ANT(X,Y;) = T(X,Y1UYs) com, cfn, nul, (reg, rre, cre)
DCcZCXAT(X,)Y)=T(Z,Y) com, nul, cdo, rfn, rre
DCZCYANTX,Y)=>T(X,Z) com, nul, rdo, cfn, cre
T(X,)Y)=T(XUZY) rdo, cre
TX,)Y)=TX,YUZ) cdo, rre

and several relations hold among them:

reg(X,Y) = cre(X,Y), reg(X,Y) = rre(X,Y),
com(X,Y) = rdo(X,Y), rfn(X,Y) = re(X,Y),
com(X,Y) = cdo(X,Y), cfn(X,Y) = cre(X,Y),
XNY =0Ardo(X,Y) = cre(X,Y),
XNY =0Acdo(X,Y) = rre(X,Y).

Often a selected type of connection is restricted to diagonal/off-diagonal blocks.
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Figure 2: Types of connection between two sets; the left set is the ego-set.
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Another group of predicates is based on the notion of vertex degree. Examples of such
predicates are:

degree density v | den(v)(X,Y; L

) card L(X,Y) > ycard(X x Y)
degree bound n | deg(n)(X,Y; L)

Ve € X :card(L(z)NY) >n

where card A denotes the cardinality — number of elements in the set A.

More complicated predicates expressing partial ordering, different types of connectivity,
..., simultaneous consideration of X xY and Y x X, and even n-ary, n > 2 predicates could
also be considered. In some applications a don’t care predicate, which is always satisfied
(true), can be useful. In this paper we shall limit our discussion to binary predicates.

In the definition of predicates we can also consider values of lines in the block. For
example, for searching balanced/clusterable partitions of a network two predicates are
needed (Doreian and Mrvar 1994):

positive | pos(X,Y; L

) Vee X,yeY : (zLy = v(z,y) >0
negative | neg(X,Y; L)

Vee X,yeY : (zLy=v(z,y) <0

~—"

4 Blockmodeling

4.1 Blockmodels
A blockmodel is an ordered sextuple M = (U, K, T, Q, 7, ) where:

e U is a set of types of units (images or representatives of classes);
e K CU xU is aset of connections;

e 7 is a set of predicates used to describe the types of connections between different
classes (clusters, groups, types of units) in a network. We assume that nul € 7. A
mapping 7 : K — T \ {nul} assigns predicates to connections;

e () is a set of averaging rules. A mapping o : K — () determines rules for computing

values of connections.

Let us denote by p : V' — U a mapping which maps classes of units to the corresponding
types. Then we define for t € U

C)=p ' (t)={z eV :plx) =t}

Therefore
Clw)={C(t): te U}

is a partition (clustering) of the set of units V.
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A (surjective) mapping u : V — U determines a blockmodel M of network N iff it
satisfies the conditions:
V(t,w) € K : 7(t,w) (C(1), Cw))
and
V(t,w) e U x U\ K : nul(C(t), C(w)).

Note that, if we set 7 = {nul,com} we are asking for a structural blockmodel (Lorrain and
White 1971); and, if we set T = {nul, reg} we are asking for a regular blockmodel (White
and Reitz 1983).

4.2 Equivalences

Let =~ be an equivalence relation over V. It partitions the set of units V into classes
(clusters)

] ={y eV :z=~y}.
We say that ~ is compatible with T over a network A iff

Ve,y € VAT e T : T([z], [y])-

It is easy to verify that the notion of compatibility for 7 = {nul, reg} reduces to the usual
definition of regular equivalence (Borgatti and Everett 1989).

For a compatible equivalence ~ the mapping u: x — [z] determines a blockmodel.

4.3 Averaging rules

The next question is how to determine the values of connections in a way compatible
with their types and values of corresponding lines in a network? This problem can be
approached by selecting/determining an appropriate averaging rule.

For t,w € U, let X = C(t) and Y = C(w); then general requirements for an averaging
rule 7: K — S could be
nul(X,Y; L) = 7(t,w) =0,
and
(Vpe L(X,Y):v(p)=¢c) = T7(t,w)=c,

or

> wlp) = N(t,w)(t,w),

PEL(X,Y)
where N (t,w) is the multiplicity of connection (¢,w). The multiplicity N (¢, w) depends
also on the corresponding type of connection. For example, we can set:
com(X,Y;L) = N(t,w)=-card(X xY),
rre(X,Y;L) = N(t,w)=cardY,
reg(X,Y;L) = N(t,w)=max(card X,cardY).
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Table 2: Characterizations of types of blocks

null all 0 (except may be diagonal)

complete all 1 (except may be diagonal)
row-dominant | 3 all 1 row (except may be diagonal)
col-dominant | 3 all 1 column (except may be diagonal)

row-regular 1-covered rows
col-regular 1-covered columns
regular 1-covered rows and 1-covered columns

row-functional | exactly one 1 in each column
col-functional | exactly one 1 in each row
density v # of 1s > v - size

There are several examples of such averaging rules:

1

ave(X,Y) = —— s /)

card L(X,Y) pe%f,Y)
1
row-ave(X,Y) = Z V()
card X' 3y
X,)Y) =
maX( ) ) pEI[rll(a‘Xi(Y) V(p)
d(X,Y) = d
me ( ) ) pEI[I,l(E)}(,Y) l/(p)

where med is the median operation.

These notions can be naturally generalized to multiple networks N' = (V,{L;}, {v:})
where (V, L;) are graphs and v; : L; — S; values of lines.

5 Optimization

To cast blockmodeling problem as an optimization problem, we can use the approach
presented in Batagelj, Doreain and Ferligoj (1992) and Batagelj, Ferligoj and Doreian
(1992).

Given a set of types of connection 7 and a block L(X,Y), we can determine the
strongest (according to the ordering of the set 7)) type T which is satisfied by L(X,Y’). In
this case we set

m(pu(X),u(Y)) =T
But what is to be done, if no type from 7T is satisfied?

We can introduce the set of ideal blocks for a given type T' € T

B(X,Y;T)={BC K(X,Y):T(B)}
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Table 3: Deviation measures for types of blocks

I(X,Y;T)
off-diagonal
null { S +d— sq diagonal
complete Ny Ne — St off-diagonal
nrnc — s +d+ sq4—n, diagonal
row-dominant )nT dlagonz.il, s¢=0
otherwise
col-dominant { mc B 1)nc diagonz}l, s¢=0
(nr - mc otherwise
row-regular (n, — pr Ne
col-regular (ne — pe)n,
regular (nc D)y + (1 — Dr)Pe
row-functional + (n, — pr)nC
col-functional pc +( Ne — Pe) Ny
density ~y maX(O, YNpNe — St)

and define the deviation 6(X,Y;T) of a block L(X,Y) from the nearest ideal block. In
Table 2 it is shown that for types from Table 1, we can efficiently test whether the block
L(X,Y) is of the type T. On the basis of these characterizations we can also construct
the corresponding measures of deviation (see Table 3) from the ideal realization. The
quantities used in the expressions for deviations have the following meaning:

Sy — total block sum = # of 1’s in a block,

Sd — diagonal block sum = # of 1’s on a diagonal,
d — diagonal error = min(sq, n, — 84),

Ny — # of rows in a block = card X,

Ne — # of columns in a block = card Y,

Dr — # of non-null rows in a block,

De — # of non-null columns in a block,

my — maximal row-sum,

My — maximal column-sum.

Note that all deviations from Table 3 are sensitive
(X, YV;T)=0<T(L(X,Y)).

Therefore a block L(X,Y) is of a type T exactly when the corresponding deviation is
I(X,Y;T)is 0.

In deviation § we can also incorporate values of lines v.

Based on deviation §(X,Y;7T) we introduce the block-error ¢(X,Y;T) of L(X,Y) for



type T. Two examples of block-errors are
e(X,Y;T)=w(T)6(X,Y;T)

and
_ (D)

rnc

EZ(Xa Ya T)

(14+46(X,Y;T)),
where w(7T) > 0 is a weight of type 7.
We extend the block-error to the set of feasible types 7 by defining
e(X,Y;7T) = gleigs(X,Y;T)

and
T(u(X), u(Y)) = argmine(X,Y;T)

TeT

To make 7 well-defined, we order (priorities) the set 7 and select the first type from 7T
which minimizes .

We combine block-errors into a total error — blockmodeling criterion function

Pu;T)= Y e @), p  (w);T).

(t,w)eUxU
The criterion functions based on block-errors £, and ¢4 are denoted P; and P, respectively.

For criterion function P;(x) we have
P(n) =0 < puisan exact blockmodeling

Also for P, we obtain an exact blockmodeling y iff the deviations of all blocks are 0.

The obtained optimization problem can be solved by local optimization (Batagelj 1991;
Batagelj, Doreian and Ferligoj 1992).

Once a partitioning p and types of connection 7 are determined, we can also compute
the values of connections. Examples of averaging rules for interval and ordinal networks
are proposed in Table 4 where

v= > vizy).

zeX,yey

5.1 Benefits from the optimization approach to blockmodeling

In the context of optimization approach, several questions can be considered, concerning
the blockmodeling problem:

e ordinary blockmodeling: Given a network N and set of types of connection 7, deter-
mine M, i.e., u, ™ and «;
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Table 4: Averaging rules for types of blocks

interval scale ordinal scale
null v/ (n.ne) 0
complete %EZ:ZZ)_ n) gicz};;,r d—0 med v[ X, Y]
row-dominant | v;/n, med v[r, Y]
col-dominant | v /n, med v[ X, c]
row-regular v/ med u[max X,Y]
col-regular v /e med v[ X, max Y]
regular v/ max(n,, n;) min(med v[max X, Y],

med v[X, max Y])

row-functional | v;/n, med v[max X, Y]
col-functional | v/n, med v[ X, max Y]
density -y { zzz;gz:zz)_ n) gglgd ~0 med upper(y, v[ X, Y])

e cvaluation of the quality of a model, comparing different models, analyzing the evo-
lution of a network (Sampson data, Doreian and Mrvar 1994): Given a network N/,
a model M, and blockmodeling yu, compute the corresponding criterion function;

e model fitting: Given a network N, set of types 7, and a model M, determine p which
minimizes the criterion function.

There are other possibilities:

e we can fit the network to a partial model and analyze the residual afterward;

e we can also introduce different constraints on the model, for example: units z and y
are of the same type; or, types of units z and y are not connected; ...

6 Example

As an example we present some blockmodels for a Student Government Discussion network.

For a criterion function, we selected P = P, with all weights equal to 1. We also
excluded trivial (row,col-)dominant blocks.

For each problem, determined by P(u; 7, k), we performed 200 runs of local optimiza-
tion. Moving a unit from one cluster to another cluster and interchanging of two units from
different clusters were used as local transformations. The results are presented in Table 5,
where rows correspond to the number k of classes in partitions, and columns to selected
types of connection 7. Entries in the table contain the corresponding minimal values of
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Table 5: Values of optimal partitions

com, reg cdo(dia)
k str reg rdo, cdo | rdo, cdo cdo rdo reg(dia)
2| 29 4 172 1/1 1/1 11 )
3| 23 7 0/4 0/2 2/2 5 3
4] 21 7 0/3 0/1 4/3 3 4
5 15 6 1/5 2/14 4/1 3 7

Table 6: Optimal partitions, 7 = { nul, com, rdo, cdo, reg }

partition

{m1,pm, m2, m3, m5, m6, m7,al, a3} {m4,a2}
{m1,a2} {pm, m2,m3, m4, m5, m6, m7,al, a3}
{m1,pm, m2, m3, m4, m5, m7} {m6,a3} {al,a2}
{m1,m2,a2} {pm, m3, m4, m5, m6,m7} {al,a3}
{m1,m2} {pm, a3} {m3, m4, m5 mb6, m7,al, a2}
{m1,m4} {pm, a3} {m2,m3, m5, m6, m7,al, a2}
{m1,m2} {pm, m4} {m3, m5,m6, m7,a2} {al,a3}
{m1,m2,a2} {pm,m4} {m3, m5,m6, m7} {al,a3}
{m1,m2,a2} {pm, m4, m6, m7} {m3, m5} {al,a3}
{m1,m2} {pm, m3} {m4,a3} {m5,al, a2} {m6, m7}
{m1,m2,a2} {pm,m4} {m3,m5} {m6, m7} {al,a3}
{m1,m2,a2} {pm,m4} {m3,m6} {m5,m7} {al,a3}
{m1,a2} {pm, m3} {m2,a3} {m4,m5} {m6, m7,al}
{m1,a3} {pm,m5} {m2,m7,al} {m3, m4} {m6,a2}

HHH 2 2 OO0 0 00O HIN

criterion function P; and as a second number, if present, the number of different optimal

partitions, which are listed in Tables 6, 7 and 8.

For an example of detailed presentation, we selected the solution Cf, from Table 6. Tt
is presented by a picture in Figure 3, and by a matrix rearranged by classes, in Table 9.
The numbers of units in the table refer to the original ordering of units in Hlebec (1993).

The corresponding model matrix and value matrix are given in Table 10. The model is

graphically represented in Figure 4.
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Table 7: Optimal partitions, 7 = { nul, rdo, cdo }

partition

Cg’l {m1,a2} {pm, m2,m3, m4, m5, m6, m7, al, a3}
C4, | {m1,m4} {pm, a3} {m2, m3, m5, m6, m7,al,a2}
ngg {m1,m2} {pm, a3} {m3, m4, m5 m6, m7,al, a2}
C¢, | {m1,m2} {pm, m4} {m3, m5, m6, m7,a2} {al,a3}

o oo N

Table 8: Optimal partitions, 7 = { nul, cdo }

partition

C5, | {m1,a2} {pm,m2, m3, m4, m5, m6, m7,al, a3}

Cs1 | {m1,m4, m5} {pm,m3, m6, m7,al,a3} {m2,a2}

CSy | {ml,m4} {pm,m3,m5,m6, m7,al, a3} {m2,a2}
Ci1 | {m1, m2} {pm, m3,a3} {m4, m5, m6, m7,al} {a2}
Cio | {m1,a2} {pm,m3,a3} {m2, m4, m5} {m6,m7,al}
Cis | {m1,a2} {pm} {m2, m3,m4, m5, m7} {m6,al, a3}
Cs, | {m1,a2} {pm} {m2,m4, m5, m7} {m3,al} {m6,a3}

I N O N R e

Table 9: Discussion Network matrix, rearranged according to Cf,

ml m2 a2|pm m4 | m3 mb m6b m7|al a3
minister 1 1] 0 1 0] 1 0 0 1 0 0[]0 O
minister 2 3| 1 0 0] 1 0 1 1 1 110 0
adviser 2 10| 1 1 00 1 1 0 0 0[]0 O
p.minister 2| 0 0O 0] O 0 0 0 0 1 {0 O
minister 4 5| 0 0 0 1 0 1 1 1 1 0 0
minister 3 4| 0 0O 0] 0 0 0 0 1 1 0 0
minister 5 6| 0 0 0 1 1 1 0 1 1 0 0
minister 6 7| 0 0O 0] 0 0 1 0 0 1 1 1
minister 7 8 | 0 0 0] 1 0 1 0 1 0|0 1
adviser 1 91 0 0 0 0 0 1 0 1 1 0 1
adviser 3 11| O 0O 0] O 0 0 1 0 1 1 0

13




al

3 =
‘e@ §
c=avi [ )
A N
v
(me s
Figure 3: Partition
Table 10: Model and value matrix
A B (C D | A B C D
A = {ml, m2 a2} rdo reg rdo - | 133 1 1.5 0
B = {pm,m4} ~ rdo rdo -~ || O 05 125 0
C={m3,m5,m6,m7} | — rdo rdo rdo |0 1.5 225 1.5
D = {al,a3} - — c¢do com || 0 0 25 1
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Figure 4: Model

All computations were carried out by program MODEL from a package of structure
analysis programs STRAN (Batagelj 1991). MODEL?2, the new version of MODEL, allows
the user to specify the types of each connection in the model. The latest version of MODEL
for PC is available in selfextracting format by anonymous FTP from

ftp://vlado.mat.uni-1j.si/pub/networks/model .exe
See also

http://vlado.mat.uni-1j.si/ftpe.htm

7 Conclusion

In this paper, we proposed a generalized approach to blockmodeling of social networks.
Many things have still to be elaborated:
e other types of connection and criterion functions.

e which types of connection are compatible with the hierarchy — models of models; is
there some ‘algebra’ behind it? It seems that Kim and Roush (1984) results may
provide o good starting point.

o let £(N, T) be the set of all equivalences compatible with 7 over /. What can be said
about the structure of this set? Can the results concerning the regular equivalences
(Borgatti and Everett 1989) be extended to generalized equivalences?

e assigning values also to units.
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