
Cores Decomposition of Networks

Vladimir Batagelj, Matjaž Zaveršnik
University of Ljubljana, Slovenia

Recent Trends in Graph Theory,
Algebraic Combinatorics, and Graph Algorithms

September 24–27, 2001, Bled, Slovenia

Cores
The notion of core was introduced by Seidman in 1983.

Let � � ��� ��� � be a simple graph. � is the set of vertices and� is the set
of lines (edges or arcs). We will denote 	 �
�
 and � �
�
 . A subgraph

� � ��
 ���
�� � induced by the set � is a � -core or a core of order � iff

�� � � � �� � � �� �� � and � is a maximum subgraph with this property.
The core of maximum order is also called the main core. The core number
of vertex� is the smallest order of a core that contains this vertex.

The degree �� � �� � can be the number of neighbors in an undirected graph
or in-degree, out-degree, in-degree � out-degree, . . . determining different
types of cores.

Properties of the cores
� The cores are nested: � � � � � � "! � #

� Cores are not necessarily connected subgraphs.

$ -cores
Let � � � � ��� � be a graph and % �� �'& � ,� � � ,& ! � a function with real
values.

The set � ! � is a % -core at level (� IR iff

� �� � � � () % �� � � �

� � is maximal such set

Monotone $ functions and cores
The function % �� � & � is monotone iff it holds

� *+ � , � �� � � � % �� � � * �) % �� � � , �

We assume also that �� � � � % �� �- � � ./ 	0 (.

For monotone function the % -core at level (can be determined by succes-
sively deleting vertices with value of % lower than (.

� � � � ;
while 1� � � � % �� � � � � (do � � � � 23 � 4 ;

Theorem 1 For monotone function % the above procedure returns the

% -core at level (.

Proof
The set 5 returned by the procedure evidently has the first property from the core definition.
Let us also show that for monotone 6 the result of the procedure is independent of the order of
deletions.

Suppose the contrary – there are two different 6 -cores at level 7 , denoted 5 and 8 . The core

5 was produced by deleting the sequence 9 : , 9 ; , 9 < , . . . , 9 = ; and 8 by the sequence > : , > ; ,

> < , . . . , > ? . Assume that 8 @ 5 ACB D . We show that this leads to contradiction.

Take any E F 8 @ 5 . We shall show that it also can be deleted. To see this, we first apply the
sequence > : , > ; , > < , . . . , > ? to get 8 . Since E F 8 @ 5 it appears in sequence 9 : , 9 ; , 9 < , . . . ,

9 G B E . Let H I B D and H J B H JLK :M N 9 J O . Then, since PQ FRS S 6UT 6 V 9 J WLX @ H JLK : YLZ 7 ,
we have, by monotonicity of 6 , also PQ F RS S 6 T 6 V 9 J W VX @ 8 Y @ H JLK : Y Z 7 . Therefore also
all 9 J F 8 @ 5 are deleted – 8 @ 5 B D – a contradiction.

Since the result of the procedure is uniquely defined and vertices outside 5 have 6 value lower
than 7 , the final set 5 satisfies also the second condition from the definition of 6 -core – it is the

6 -core.

Examples of monotone $ functions
Let [�� � denotes the set of neighbors of vertex� in graph � , and

[�� �'& � � [�� ��\ & .

1. % * �� � & � � �� �] �� �
2. % , �� � & � � � 	 � � �] �� �
3. %^ �� � & � � /_ (�� �] �� �
4. %` �� � & � � � 	 � � �] �� � � /_ (�� �] �� �
5. %a �� � & � � � � �] �� �

�� � �� � , �� � �� �cb d ; d otherwise

6. %e �� � & � � f gh ikj l] mon �� �_ � , wheren � � p IRq r
7. %s �� � & � � t uv f gh ij l] mwn �� �_ � , wheren � � p IR

Example of nonmonotone $ function

% �� �'& � � x

 [�� � & �
 f g h ikj l] m

n �� �_ �

wheren � � p IRq r . % �� � & � � d if [�� �'& � � - .

In the graph � � ��� ��� � ,� � 3 n �zy � . �z{ �z| � } 4 ,

� �n � y � �y � . � � . � { � �| � } � � } � . �

n ~ x � ~ x

we get different results depending on whether we first delete the vertex . or

y (or }).

Local function
The % function is local iff

% �� � & � � % �� � [�� �'& � �

For local % function an � � � t uv ��� ��� � � 	 � � algorithm exists (assuming
that % �� � [�� � � � � can be computed in � � �� � � �� � �).

Algorithm
INPUT: graph � � � � ��� � represented by lists of neighbors and (� IR
OUTPUT: � ! � , � is a % -core at level (

1. � � � � ;
2. for� � � do % �� � � � % �� � [�� � � � � ;
3. y_ �� { � � 	� | n % �� � % � ;
4. while % � (/ % � � (do begin
4.1. � � � � 23 (/ % 4 ;
4.2. for� � [� (/ % � � � do begin
4.2.1. % �� � � � % �� � [�� � � � � ;
4.2.2. _ % { n (| � | n % �� � % � ;

end;
end;

The step 4.2.1. can often be speeded up by updating the % �� � .

Determining the hierarchy of $ -cores
INPUT: graph � � � � ��� � represented by lists of neighbors
OUTPUT: table ./� | with core number for each vertex

1. � � � � ;
2. for� � � do % �� � � � % �� � [�� � � � � ;
3. y_ �� { � � 	� | n % �� � % � ;
4. while sizeof �� | n % �b d do begin
4.1. � � � � 23 (/ % 4 ;
4.1 ./� | � (/ % � � � % � (/ % � ;
4.2. for� � [� (/ % � � � do begin
4.2.1. % �� � � � % �� � [�� � � � � ;
4.2.2. _ % { n (| � | n % �� � % � ;

end;
end;

An �w� � algorithm for degree-cores

INPUT: graph � � � � ��� � represented by lists of neighbors
OUTPUT: table ./� | with core number for each vertex

1.1 compute the degrees of vertices;
1.2 order the set of vertices� in increasing order of their degrees;
2 for each� � � in the order do begin
2.1 ./� | �� � � � { | �� | | �� � ;
2.2 for each_ � [| � �� y /� 0 �� � do
2.2.1 if{ | �� | | �_ �b { | �� | | �� � then begin
2.2.1.1 { | �� | | �_ � � � { | �� | | �_ ��� x ;
2.2.1.2 reorder� accordingly

end
end;

Data structure

Implementation
01 procedure cores(var g: graph; var deg: tableVert);
02 var
03 n, d, md, i, start, num: integer;
04 v, u, w, du, pu, pw: integer;
05 vert, pos: tableVert;
06 bin: tableDeg;
07 begin
08 n := size(g); md := 0;
09 for v := 1 to n do begin
10 d := 0; for u in Neighbors(g, v) do inc(d);
11 deg[v] := d; if d � md then md := d;
12 end;
13 for d := 0 to md do bin[d] := 0;
14 for v := 1 to n do inc(bin[deg[v]]);
15 start := 1;
16 for d := 0 to md do begin
17 num := bin[d]; bin[d] := start;
18 inc(start, num);
19 end;

20 for v := 1 to n do begin
21 pos[v] := bin[deg[v]]; vert[pos[v]] := v;
22 inc(bin[deg[v]]);
23 end;
24 for d := md downto 1 do bin[d] := bin[d-1];
25 bin[0] := 1;
26 for i := 1 to n do begin
27 v := vert[i];
28 for u in Neighbors(g, v) do begin
29 if deg[u] � deg[v] then begin
30 du := deg[u]; pu := pos[u];
31 pw := bin[du]; w := vert[pw];
32 if uZ � w then begin
33 pos[u] := pw; vert[pu] := w;
34 pos[w] := pu; vert[pw] := u;
35 end;
36 inc(bin[du]); dec(deg[u]);
37 end;
38 end;
39 end;
40 end;

Time complexity
We shall show that the described algorithm runs in time � � t uv � � � 	 � � .
To compute (08-12) the degrees of all vertices we need time � � t uv � � � 	 � �

since we have to consider each line at most twice. The bin sort (13-25)
consists of five loops of size at most 	 with constant time � � x � bodies –
therefore it runs in time � � 	 � .
The statement (27) requires a constant time and therefore contributes � � 	 �

to the algorithm. The conditional statement (29-37) also runs in constant
time. Since it is executed for each edge of � at most twice the contribution
of (28-38) in all repetitions of (26-39) is � � t uv � � � 	 � � .
Summing up — the total time complexity of the algorithm is � � t uv � � � 	 � � .
Note that in a connected network � � 	 � x and therefore � � t uv � � � 	 � � �

� � � � .

Adaptation of the algorithm for directed graphs
For directed simple graphs without loops only few changes in the imple-
mentation of the algorithm are needed depending on the interpretation of
the degree.

In the case of in-degree (out-degree) the function in Neighbors must
return in line 10 the next not yet visited in-neighbor (out-neighbor) and in
line 28 the next not yet visited out-neighbor (in-neighbor).

If degree is defined as in-degree � out-degree, the maximum degree can be
at most � 	 � � . In this case we must provide enough space for table bin
(� 	 � x elements). Function in Neighbors must return next not yet
visited in-neighbor or out-neighbor. Note that (in and out)-neighbors are
returned twice.

Example
We applied the described algorithm for cores decomposition on a network
based on the Knuth’s English dictionary. This network has 52652 vertices
(English words having 2 to 8 characters) and 89038 edges (two vertices
are adjacent, if we can get one word from another by changing, removing
or inserting a letter). The obtained network is sparse: the average degree
is 3.382. The program took on PC only 0.2 seconds to compute the core
numbers.

Summary results
vertices with core number � size of � -core� # % # %

25 26 0.049 26 0.049
16 34 0.065 60 0.114
15 16 0.030 76 0.144
14 59 0.112 135 0.257
13 82 0.156 217 0.412
12 200 0.380 417 0.792
11 202 0.384 619 1.176
10 465 0.883 1084 2.059

9 504 0.957 1588 3.016
8 923 1.753 2511 4.769
7 1114 2.116 3625 6.885
6 1590 3.020 5215 9.905
5 2423 4.602 7638 14.507
4 3859 7.329 11497 21.836
3 5900 11.206 17397 33.042
2 8391 15.937 25788 48.978
1 13539 25.714 39327 74.693
0 13325 25.308 52652 100.000

Vertices with core number 0 are isolated vertices. Vertices with core number
1 have only one neighbor in the network. The 25-core (main core) consists
of 26 vertices, where each vertex has at least 25 neighbors inside the core
(obviously this is a clique). The corresponding words are a’s, b’s, c’s,
. . . , y’s, z’s.

The 16-core has additional 34 vertices (an, on, ban, bon, can, con,
Dan, don, eon, fan, gon, Han, hon, Ian, ion, Jan, Jon, man, Nan,
non, pan, pon, ran, Ron, San, son, tan, ton, van, von, wan, won,
yon, Zan). There are no edges between vertices with core number 25
and vertices with core number 16. The adjacency matrix of the subgraph
induced by these 34 vertices is presented on figure 1. In this matrix we can
see two 17-cliques and some additional edges.

The 15-core has additional 16 vertices (ow, bow, cow, Dow, how, jow,
low, mow, now, pow, row, sow, tow, vow, wow, yow). This is a clique
again, because only the first letters of the words are different.

Conclusion
The cores, because they can be efficiently determined, are one among few
concepts that provide us with meaningful decompositions of large networks.
We expect that different approaches to the analysis of large networks can
be built on this basis. For example, the sequence of vertices in sequential
coloring can be determined by their core numbers (combined with their
degrees). Cores can also be used to reveal interesting subnetworks in large
networks [3, 2]:

� If it exists, a � -component is contained in a � -core.

� If it exists, a � -clique is contained in a � -core.

� � � � �) ./� | � � � .
The described algorithm is implemented in program for large networks
analysis Pajek (Slovene word for Spider) for Windows (32 bit) [1]. It is
freely available, for noncommercial use, at its homepage:

http://vlado.fmf.uni-lj.si/pub/networks/pajek/

References
[1] BATAGELJ, V. & MRVAR, A. (1998). Pajek – A Program for Large Network Analysis.

Connections 21 (2), 47–57.

[2] BATAGELJ, V. & MRVAR, A. (2000). Some Analyses of Erdős Collaboration Graph.
Social Networks 22, 173–186.

[3] BATAGELJ, V., MRVAR, A. & ZAVERŠNIK, M. (1999). Partitioning approach
to visualization of large graphs. In KRATOCHVÍL, Jan (ed.). Proceedings of 7th
International Symposium on Graph Drawing, September 15-19, 1999, Štiřı́n Castle,
Czech Republic. (Lecture notes in computer science, 1731). Berlin [etc.]: Springer,
90–97.

[4] GAREY, M. R. & JOHNSON, D. S. (1979). Computer and intractability. San Francisco:
Freeman.

[5] KNUTH, D. E. (1992). Dictionaries of English words.
ftp://labrea.stanford.edu/pub/dict/ .

[6] SEIDMAN, S. B. (1983). Network structure and minimum degree. Social Networks 5,
269–287.

[7] WASSERMAN, S. & FAUST, K. (1994). Social Network Analysis: Methods and
Applications. Cambridge: Cambridge University Press.

