
An O(m) Algorithm for Cores Decomposition of
Networks

Vladimir Batagelj, Matjaž Zaveršnik

Department of Mathematics, University of Ljubljana, Slovenia
vladimir.batagelj@uni-lj.si

matjaz.zaversnik@fmf.uni-lj.si

April 24, 2002 / September 1, 2002

Abstract

The structure of large networks can be revealed by partitioning them to smaller
parts, which are easier to handle. One of such decompositions is based on k–cores,
proposed in 1983 by Seidman. In the paper an efficient, O(m), m is the number of
lines, algorithm for determining the cores decomposition of a given simple network
is presented. An application on the authors collaboration network in computational
geometry is presented.

Keywords: core, large network, decomposition, graph algorithm

1 Introduction

“One of the major concerns of social network analysis is identification of cohesive sub-
groups of actors within a network. Cohesive subgroups are subsets of actors among whom
there are relatively strong, direct, intense, frequent, or positive ties” ([[1]], p. 249). Several
notions were introduced to formally describe cohesive groups: cliques, n–cliques, n–clans,
n–clubs, k–plexes, k–cores, lambda sets, . . . For most of them it turns out that they are
algorithmically difficult (NP hard [[2]] or at least quadratic), but for cores a very efficient
algorithm exists. We describe it in details in this paper.

2 Cores

The notion of a core was introduced by Seidman in 1983 [[3]].
Let G = (V, L) be a graph. V is the set of vertices and L is the set of lines (edges or

arcs). We will denote n = |V | and m = |L|. A subgraph Hk = (W, L|W) induced by the
set W is a k-core or a core of order k iff ∀v ∈ W : degH(v) ≥ k, and Hk is the maximum
subgraph with this property. The core of maximum order is also called the main core.
The core number of vertex v is the highest order of a core that contains this vertex.

1

Figure 1: 0, 1, 2 and 3 core

The degree deg(v) can be: in-degree, out-degree, in-degree + out-degree, . . . dete-
rmining different types of cores.

In Figure 1 an example of cores decomposition of a given graph is presented. From
this figure we can see the following properties of cores:

• The cores are nested: i < j =⇒ Hj ⊆ Hi

• Cores are not necessarily connected subgraphs.

3 Algorithm

Our algorithm for determining the cores hierarchy is based on the following property [[8]]:

If from a given graph G = (V, L) we recursively delete all vertices, and lines
incident with them, of degree less than k, the remaining graph is the k-core.

The outline of the algorithm is as follows:

INPUT: graph G = (V, L)
represented by lists of neighbours

OUTPUT: table core
with core number for each vertex

1.1 compute the degrees of vertices;
1.2 order the set of vertices V

in increasing order of their degrees;
2 for each v ∈ V in the order do begin

2.1 core[v] := degree[v];
2.2 for each u ∈ Neighbours(v) do

2.2.1 if degree[u] > degree[v] then begin

2

2.2.1.1 degree[u] := degree[u] − 1;
2.2.1.2 reorder V accordingly

end

end;

The block of statements 2.2.* describes the effect of deletion of the vertex v and all lines
incident with it.

Note that the order used in the line 2 is changed at each step by the line 2.2.1.2.
In the refinements of the algorithm we have to provide efficient implementations of

steps 1.2 and 2.2.1.2.

4 Detailed Algorithm

In the Algorithm 1 we describe an implementation of the algorithm in a Pascal like
language for the case of simple undirected graph G = (V, E), E is the set of edges.

The structure graph is used to represent a given graph G = (V, L). We will not describe
the structure into details, because there are several possibilities, how to implement it. We
assume that the vertices of G are numbered from 1 to n. The user has also to provide
function size, which returns the number of vertices in the given graph, and function in

Neighbours, which returns the next not yet visited neighbour of a given vertex in the
given graph. Using an adequate representation of graph G (lists of neighbours) we can
implement both functions to run in a constant time.

Two different types of integer arrays (tableVert and tableDeg) are also introduced.
Both of them are of length n. The only difference is how we index their elements. We
start with index 1 in tableVert and with index 0 in tableDeg.

The algorithm is implemented by the procedure cores. Its input is a graph G, rep-
resented by the variable g of type graph; the output is array deg of type tableVert

containing the core number for each vertex of graph G.
We also need (04-07) some integer variables and three additional arrays (see Figure 2).

The array vert contains the set of vertices, sorted by their degrees. The positions of
vertices in array vert are stored in array pos. The array bin contains for each possible
degree the position of the first vertex of that degree in array vert.

In a real implementation of the proposed algorithm dynamically allocated arrays
should be used. To simplify our description of the algorithm we replaced them by static.

At the beginning we have to initialise some local variables and arrays (09-15). First
we determine n, the number of vertices of graph g. Then we compute its degree for

each vertex v in the graph g and store it into the array deg. Simultaneously we also
compute the maximum degree md.

Since the values of degrees are integers from the interval 0 .. n − 1, we can sort

the vertices in increasing order of their degrees in linear time using a variant of
bin-sort (16-28).

First we count (16-17) how many vertices will be in each bin (bin consists of vertices
of the same degree). The bins are numbered from 0 to md. From the bin sizes we can
determine (18-23) starting positions of bins in the array vert. The bin 0 starts at position
1, while other bins start at position, equal to the sum of starting position and size of the

3

Algorithm 1: The Cores Algorithm for Simple Undirected Graphs

01 procedure cores(var g: graph;
02 var deg: tableVert);
03 var
04 n, d, md, i, start, num: integer;
05 v, u, w, du, pu, pw: integer;
06 vert, pos: tableVert;
07 bin: tableDeg;
08 begin
09 n := size(g); md := 0;
10 for v := 1 to n do begin
11 d := 0;
12 for u in Neighbours(v) do inc(d);
13 deg[v] := d;
14 if d > md then md := d;
15 end;
16 for d := 0 to md do bin[d] := 0;
17 for v := 1 to n do inc(bin[deg[v]]);
18 start := 1;
19 for d := 0 to md do begin
20 num := bin[d];
21 bin[d] := start;
22 inc(start, num);
23 end;
24 for v := 1 to n do begin
25 pos[v] := bin[deg[v]];
26 vert[pos[v]] := v;
27 inc(bin[deg[v]]);
28 end;
29 for d := md downto 1 do
30 bin[d] := bin[d-1];
31 bin[0] := 1;
32 for i := 1 to n do begin
33 v := vert[i];
34 for u in Neighbours(v) do begin
35 if deg[u] > deg[v] then begin
36 du := deg[u];
37 pu := pos[u];
38 pw := bin[du];
39 w := vert[pw];
40 if u <> w then begin
41 pos[u] := pw;
42 pos[w] := pu;
43 vert[pu] := w;
44 vert[pw] := u;
45 end;
46 inc(bin[du]);
47 dec(deg[u]);
48 end;
49 end;
50 end;
51 end;

4

Figure 2: Arrays

previous bin. To avoid an additional array we used the same array (bin) to store the
starting positions of bins. Now we can put (24-28) vertices of the graph G into the array
vert. For each vertex we know to which bin it belongs and what is the starting position
of that bin. So we can put the current vertex to the proper place, remember its position
in the table pos, and increase the starting position of the bin we used. The vertices are
now sorted by their degrees.

In the final step of the initialisation phase we have to recover the starting positions

of the bins (29-31). We increased them several times in previous step, when we put
vertices into corresponding bins. It is obvious, that the changed starting position is the
original starting position of the next bin. To restore the right starting positions we have
to shift the values in array bin for one position to the right. We also have to reset the
starting position of the bin 0 to value 1.

The cores decomposition , implementing the for each loop from the algorithm de-
scribed in section 3, is done in the main loop (32-50) that runs over all vertices v of the
graph g in the order, determined by the table vert. The core number of the current
vertex v is the current degree of that vertex. This number is already stored in table deg.
For each neighbour u of vertex v with higher degree we have to decrease its degree by 1
and move it for one bin to the left. Moving vertex u for one bin to the left is an operation
that can be done in a constant time. First we have to swap the vertex u and the first
vertex in the same bin. We also have to swap their positions in the array pos. Finally we
increase the starting position of the bin (we increase the previous and reduce the current
bin for one element).

4.1 Time complexity

We shall show that the described algorithm runs in time O(max(m, n)).

5

To compute (09-15) the degrees of all vertices we need time O(max(m, n)) since we
have to consider each line at most twice. The bin sort (16-31) consists of five loops of size
at most n with constant time O(1) bodies – therefore it runs in time O(n).

The statement (33) requires a constant time and therefore contributes O(n) to the
algorithm. The conditional statement (35-48) also runs in constant time. Since it is
executed for each edge of G at most twice the contribution of (34-49) in all repetitions of
(32-50) is O(max(m, n)).

Summing up — the total time complexity of the algorithm is O(max(m, n)). Note
that in a connected network m ≥ n − 1 and therefore O(max(m, n)) = O(m).

4.2 Adaption of the algorithm for directed graphs

For directed simple graphs without loops only few changes in the implementation of the
algorithm are needed depending on the interpretation of the degree. In the case of in-
degree (out-degree) the function in Neighbours in line 12 must return the next not yet
visited in-neighbour (out-neighbour), and the function in Neighbours in line 34 must
return the next not yet visited out-neighbour (in-neighbour).

If the degree is defined as in-degree + out-degree, the maximum degree can be at
most 2n − 2. In this case we have to increase the size of table bin to 2n − 1 elements.
The function in Neighbours must return the next not yet visited in-neighbour or out-
neighbour.

The described algorithm is implemented in program for large networks analysis Pajek
(Slovene word for Spider) for Windows (32 bit) [[4]]. It is freely available, for noncom-
mercial use, at its homepage:

vlado.fmf.uni-lj.si/pub/networks/pajek/

5 Example

To illustrate the use of cores we applied the described algorithm for cores decomposition on
the authors collaboration network based on the BibTEX bibliography [[5]] obtained
from the Computational Geometry Database geombib, version February 2002 [[6]].
Two authors are linked with an edge, iff they wrote a common paper. Using a simple
program written in programming language Python, the BibTEX data were transformed
into the corresponding network, and output to the file in Pajek format. The obtained
network has 9072 vertices (authors) and 22577 edges (common papers or books) / 13567
edges as a simple network – multiple edges between a pair of authors are replaced with a
single edge.

The problem with the obtained network is that, because of non standardized writing
of the author’s name, it contains several vertices corresponding to the same author. For
example: R.S. Drysdale, Robert L. Drysdale, Robert L. Scot Drysdale, R.L. Drysdale,
S. Drysdale, R. Drysdale, and R.L.S. Drysdale; or: Pankaj K. Agarwal, P. Agarwal,
Pankaj Agarwal, and P.K. Agarwal – that are easy to guess; but an ’insider’ information
is needed to know that Otfried Schwarzkopf and Otfried Cheong are the same person.
Also, no provision is made in the database to discern two persons with the same name.

6

Table 2: Core Numbers Distribution
Core Freq CumFreq% Representative

0 1185 16.1378 N. Bourbaki
1 2218 46.3435 S. Kambhampati
2 1714 69.6854 G. Bilardi
3 1023 83.6171 Y.I. Yoon
4 503 90.4671 B.B. Kimia
5 248 93.8445 C.A. Duncan
6 122 95.5059 T.M. Murali
7 126 97.2218 J.M. Kleinberg
8 34 97.6849 F.F. Yao
9 37 98.1888 K.R. Lee

10 20 98.4611 H. Alt
11 52 99.1693 M. Flickner
13 1 99.1829 M.H. Overmars
14 7 99.2782 M. Sharir
15 14 99.4689 N.M. Amato
16 17 99.7004 D. White
21 22 100.0000 L.J. Guibas

Sum 7343

We manually produced the name equivalence partition and then shrank (in Pajek) the
network according to it. The reduced simple network contains 7343 vertices and 11898
edges. It is a sparse network – its average degree is 2m/n = 3.24. The reduced network
is available for a download on Pajek’s homepage among other network data.

On the reduced network we applied our core algorithm. In Table 2 the summary
results are presented.

Vertices with core number 0 are isolated vertices – noncollaborating authors. The
21-core (main core) consists of 22 vertices, where each vertex has at least 21 neighbours
inside the core (obviously this is a clique).

In Figure 3 the subgraph induced by vertices in 10-core and higher is presented. It
has 133 vertices. They have different colours (gray levels) indicating the order of the core.
The picture was obtained using Kamada-Kawai graph drawing procedure. Afterward
some vertices were slightly repositioned to improve the readability of labels. The main
core consists of the darkest vertices in the middle lower part of the picture. To it, lower
level cores are attached. Detailed inspection of the cut at level 15 reveals that also vertices
with core number 15 form a clique of order 14. This clique is linked with many ties to
the subgroup (P.K. Agarwal, D.P. Dobkin, L.J. Guibas, C-K. Yap, H. Edelsbrunner, D.
Eppstein, J.S. Snoeyink, L.P. Chew and M.W. Bern) of the main core. The remaining
members of the main core are collaborating mainly inside the main core. Two clusters
with core numbers 16 and 11 (again, both are cliques) are linked to the main group by
the ’liason’ authors (Scott A. Mitchell and D.T. Lee).

Note also, that the positions offered by cores are partially different from the positions
suggested by the top of the degree distribution (author and number of different coauthors):

7

L.J.Guibas

M.Sharir

L.P.Chew

M.Flickner

M.J.vanKreveld

D.G.Kirkpatrick

W.J.Lenhart

S.P.Fekete

F.Hurtado

B.Chazelle

D.White

K.R.Romanik

N.M.Amato

T.D.Blacker

J.S.Snoeyink

T.C.Shermer

D.Z.Chen

D.P.Dobkin

H.Alt

F.P.Preparata

J.Erickson

J.E.Hershberger

C-K.Yap

M.Whitely

J-D.Boissonnat

S.J.Fortune

R.L.S.Drysdale

J.Harer

D.M.Avis

O.Schwarzkopf

J.S.B.Mitchell

D.Bremner

H.A.El-Gindy

D.Steele

B.Dom

J-R.SackM.H.Overmars

V.Sacristan

O.Aichholzer

R.Pollack

D.H.Rappaport

S.H.Whitesides

D.Eppstein

E.D.Demaine

M.T.Goodrich

D.M.Mount

S-W.Cheng

D.L.Souvaine

S.A.Mitchell

D.PetkovicP.Yanker

M.W.Bern

P.K.Agarwal

I.G.Tollis

T.J.Tautges

H.Edelsbrunner

T.L.Edwards

H.Imai

E.M.Arkin

R.Wenger

S.E.Benzley

P.Plassmann

M.T.deBerg

D.Halperin

T.C.Biedl

W.J.Bohnhoff

J.R.Hipp

P.Belleville

C.Grimm

G.T.Toussaint

M.Yvinec

H.Meijer

Te.Asano

S.S.Skiena

M.Teillaud

H.S.Sawhney

D.Zorin

A.Lubiw

S.Suri

D.T.Lee

R.R.Lober

K.Kedem
E.Welzl

G.Liotta

J.Pach

P.K.Bose

J.C.Clements

S.R.Kosaraju

J.Weeks

D.Letscher

G.Lerman

J.Czyzowicz

A.Aggarwal

H.Everett

B.Zhu

T.K.Dey

E.Trimble

N.AmentaG.D.Sjaardema

R.Tamassia

M.Gorkani

B.Aronov

S.Lazard
T.Roos

G.T.Wilfong

M.L.Demaine

J-M.Robert

T.J.Wilson

S.M.Robbins

R.Seidel

N.Katoh

G.Rote

J.Urrutia

J.S.Vitter

I.Streinu

L.Lopez-Buriek
C.K.Johnson

F.Aurenhammer

S.Parker

J.Matousek

E.Sedgwick

J.O’Rourke

O.Devillers

J.Ashley

J.Hafner

C.Zelle

W.R.Oakes

W.Niblack

K.Mehlhorn

M.E.Houle

J.Hass

A.Hicks

Q.Huang

Figure 3: Computational Geometry 10 Core

L.J. Guibas 102, P.K. Agarwal 98, J.S. Snoeyink 91, H. Edelsbrunner 90, M.H. Overmars
88, M. Sharir 87, J. O’Rourke 85, R. Tamassia 79, J. S.B. Mitchell 76, C-K. Yap 76, E.
Welzl 74, D.P. Dobkin 73, G.T. Toussaint 72, M.T. Goodrich 70, K. Mehlhorn 69, R.E.
Tarjan 69.

The cores do not take into account, how many papers have two authors in common.
To consider also the values on lines a generalized notion of core was introduced [[7]]. Also
for them an efficient (subquadratic) algorithm exists, with the time complexity O(m ·
max(∆, log n)), ∆ denotes the maximum degree in the network.

6 Conclusion

The cores, because they can be efficiently determined, are one among few concepts that
provide us with meaningful decompositions of (very) large networks. We expect that
different approaches to the analysis of large networks can be built on this basis.

First, they can be used for quick identification of important parts of a network [[8,
9]]. Second, since some other types of subgraphs (for example: k-cliques, k-connected
components) are contained in the k-core, it can be used to speed-up the corresponding
search algorithms. And third, the ordering determined by core numbers can prove useful in
some heuristic algorithms – for example, the sequence of vertices in sequential colourings
can be determined by their core numbers (combined with their degrees).

8

Acknowledgments

This work was supported by the Ministry of Education, Science and Sport of Slovenia,
Project J1-8532. It is a detailed version of the part of the talk presented at Recent Trends

in Graph Theory, Algebraic Combinatorics, and Graph Algorithms, September 2001, Bled,
Slovenia.

References

[1] Wasserman, S. and Faust, K. (1994) Social Network Analysis: Methods and Applica-

tions, Cambridge University Press, Cambridge.

[2] Garey, M. R. and Johnson, D. S. (1979) Computer and intractability, Freeman, San
Francisco.

[3] Seidman S. B. (1983) Network structure and minimum degree, Social Networks, 5,
269–287.

[4] Batagelj, V. and Mrvar, A. (1998) Pajek – A Program for Large Network Analysis,
Connections, 21 (2), 47–57.

[5] Beebe, N.H.F. (2002) Nelson H.F. Beebe’s Bibliographies Page,
http://www.math.utah.edu/~beebe/ bibliographies.html.

[6] Jones, B., Computational Geometry Database, February 2002,
ftp://ftp.cs.usask.ca/pub/geometry/,
http://compgeom.cs.uiuc.edu/~jeffe/compgeom/ biblios.html.

[7] Batagelj, V. and Zaveršnik, M. (2002) Generalized cores, submitted.

[8] Batagelj, V., Mrvar, A. and Zaveršnik, M. (1999) Partitioning approach to visualiza-
tion of large graphs, In Kratochv́ıl, J. (ed), Lecture notes in computer science, 1731,
Springer, Berlin, 90–97.

[9] Batagelj, V. and Mrvar, A. (2000) Some Analyses of Erdős Collaboration Graph,
Social Networks, 22, 173–186.

9

