
'

&

$

%

Some Approaches to the Analysis of Large Networks
in preparation

Vladimir Batagelj
University of Ljubljana

Based on slides for:

Annual Meeting of Research Cluster 1126: Algorithmic Aspects of Large and Complex Networks,
University of Konstanz, July 22-24, 2002

Student conference Knowledge Extraction, University of Ljubljana, FMP, August 18-25, 2002

V. Batagelj: Some Approaches to the Analysis of Large Networks 1'

&

$

%

Outline
• Pajek

• Genealogies and p-graphs (with Andrej Mrvar)

• Cores and p-cores (with Matjaž Zaveršnik)

• Citation networks

• Reuters news after September 11th (with Andrej Mrvar)

• Connectivity by short cycles (with Matjaž Zaveršnik)

University of Ljubljana version August 25, 2002

V. Batagelj: Some Approaches to the Analysis of Large Networks 2'

&

$

%

Pajek
Pajek (Slovene word for Spider) is a
program, for Windows (32 bit), for analysis
of large networks. It is freely available, for
noncommercial use, at its homepage:
http://vlado.fmf.uni-lj.si/
pub/networks/pajek/

With Andrej Mrvar, we started to develop Pajek in November 1996. Some
procedures were contributed by Matjaž Zaveršnik.

University of Ljubljana version August 25, 2002

V. Batagelj: Some Approaches to the Analysis of Large Networks 3'

&

$

%

Large Networks

Large networks can be found in many different areas. Usually they are produced
automatically, using computers, from different data sources that are already
available in computer readable form. For example:

• transportation and communication networks;

• flow graphs of programs;

• large molecule;

• large genealogies;

• networks derived from dictionaries and other texts;

• bibliographies, citation networks, . . .

Such networks cannot be treated efficiently using standard network analysis tools.

University of Ljubljana version August 25, 2002

V. Batagelj: Some Approaches to the Analysis of Large Networks 4'

&

$

%

Pajek – Goals

The main goals in the design of Pajek are:

• to support abstraction by (recursive) factorization of a large network into
several smaller networks that can be treated further using more sophisticated
methods;

• to provide the user with some powerful visualization tools;

• to implement a selection of efficient (subquadratic) algorithms for analysis of
large networks.

With Pajek we can: find clusters (components, neighbourhoods of ’central’
vertices, cores, . . .) in a network, extract and show vertices that belong to the same
clusters separately, possibly with the parts of the context (detailed local view),
shrink vertices in clusters and show relations among clusters (global view).

University of Ljubljana version August 25, 2002

V. Batagelj: Some Approaches to the Analysis of Large Networks 5'

&

$

%

Pajek – Goals

University of Ljubljana version August 25, 2002

V. Batagelj: Some Approaches to the Analysis of Large Networks 6'

&

$

%

Pajek Data Structures

Currently Pajek uses six data structures to implement the algorithms:

• network – main object (vertices and lines);

• partition – to which cluster a vertex belongs;

• vector – values of vertices;

• permutation – reordering of vertices;

• cluster – subset of vertices (e.g. a cluster from partition);

• hierarchy – hierarchically ordered clusters and vertices.

The power of Pajek is based on several transformations which support different
transitions among these data structures.

Besides its own input formats, Pajek supports several other formats: UCINET
DL, genealogical GED, and some molecular formats: BS (Ball and Stick), MAC
(Mac Molecule) and MOL (MDL MOLfile).

University of Ljubljana version August 25, 2002

V. Batagelj: Some Approaches to the Analysis of Large Networks 7'

&

$

%

Algorithms

Besides standard algorithms for analysis of large networks (connectivities,
topological sort, shortest paths, . . .) Pajek contains also some new algorithms:

• pattern search – appearances of selected small network inside the large;

• triadic census – distribution of triads;

• centrality indices – Brandes’s algorithms;

• hubs and authorities – Kleinberg’s algorithm;

• p-graphs – representation of genealogies and their analysis;

• cores and p-cores – identification of dense parts of network;

• citation weights – Hummon and Doreian’s methods for citation network
analysis;

• short cycle connectivity – elaboration of Everett’s cyclic decomposition of
networks (EBLOC);

• generalized blockmodeling.

University of Ljubljana version August 25, 2002

V. Batagelj: Some Approaches to the Analysis of Large Networks 8'

&

$

%

Demo
Network/Read [type=bs]/DNA.bs
Net/Partitions/Vertex Labels
Draw/Draw-Partition
draw:
Options/Transform/Fit Area/max(x),...
[move X,Y,Z]
main:
Network/Read [type=net]/C5.net
Nets/First Network
[select network DNA.bs]
Nets/Second Network
Nets/Fragment (1 in 2)/Find [opts: induced,extract]
Partitions/Second Partition
[select partition Name partition of N1]
Partitions/First Partition
Partitions/Extract Second from First [1 1]
Draw/Draw-Partition

University of Ljubljana version August 25, 2002

'

&

$

%

Genealogies
GEDCOM standard http://www.gendex.com/gedcom55/55gctoc.htm

Ore graph p-graph

grandfather-f grandmother-f

father mother

ME wife

sondaughter-in-law daughter son-in-law

stepmother

grandfather-m grandmother-m

sisterbrothersister-in-law

son-in-law & daughter

ME & wife

father & mother

grandfather-f & grandmother-f grandfather-m & grandmother-m

son & daughter-in-law

brother & sister-in-law sister

father & stepmother

The p-graph representation provides simpler picture of genealogy and is also easier
to analyse – acyclic graph.

'

&

$

%

Cores
The notion of core was introduced by Seidman in 1983.

Let G = (V, L) be a simple graph. V is the set of vertices and L is the set of lines
(edges or arcs). We will denote n = |V | and m = |L|. A subgraph H = (C, L|C)

induced by the set C is a k-core or a core of order k iff ∀v ∈ C : degH(v) ≥ k

and H is a maximum subgraph with this property. The core of maximum order is
also called the main core. The core number of vertex v is the highest order of a
core that contains this vertex. Since the set C determines the corresponding core
H we also often call it a core.

The degree deg(v) can be the number of neighbors in an undirected graph or
in-degree, out-degree, in-degree + out-degree, . . . determining different types of
cores.

'

&

$

%

Properties of the cores

• The cores are nested: i < j =⇒ Hj ⊆ Hi

• Cores are not necessarily connected subgraphs.

• There exists very efficient algorithm to determine core numbers.

'

&

$

%

Algorithm for cores
If from a given graph G = (V, L) we recursively delete all vertices, and lines
incident with them, of degree less than k, the remaining graph is the k-core. It can
be implemented in O(m).

INPUT: graph G = (V, L) represented by lists of neighbours
OUTPUT: table core with core number for each vertex
1.1 compute the degrees of vertices;
1.2 order the set of vertices V in increasing order of their degrees;
2 for each v ∈ V in the order do
2.1 core[v] := degree[v];
2.2 for each u ∈ Neighbours(v) do
2.2.1 if degree[u] > degree[v] then
2.2.1.1 degree[u] := degree[u] − 1;
2.2.1.2 reorder V accordingly

'

&

$

%

Example: Computational Geometry

We applied the described algorithm for cores on the authors collaboration
network based on the BibTEX bibliography obtained from the Computational
Geometry Database geombib. Two authors are linked with an edge, iff they
wrote a common paper. Using a simple program in Python, the BibTEX data were
transformed into the corresponding network, and output to the file in Pajek format.
The obtained network has 9072 vertices (authors) and 22577 edges / 13567 edges
as a simple network.

The problem with the obtained network is that it contains several vertices
corresponding to the same author (Pankaj K. Agarwal, P. Agarwal, Pankaj
Agarwal, and P.K. Agarwal) – that are easy to guess; but an ’insider’ information
is needed to know that O. Schwarzkopf and O. Cheong are the same person. We
manually produced the name equivalence partition and then shrank the network
according to it. The reduced simple network contains 7343 vertices and 11898
edges.

'

&

$

%

Computational geometry 10 core

L.J.Guibas

M.Sharir

L.P.Chew

M.Flickner

M.J.vanKreveld

D.G.Kirkpatrick

W.J.Lenhart

S.P.Fekete

F.Hurtado

B.Chazelle

D.White

K.R.Romanik

N.M.Amato

T.D.Blacker

J.S.Snoeyink

T.C.Shermer

D.Z.Chen

D.P.Dobkin

H.Alt

F.P.Preparata

J.Erickson

J.E.Hershberger

C-K.Yap

M.Whitely

J-D.Boissonnat

S.J.Fortune

R.L.S.Drysdale

J.Harer

D.M.Avis

O.Schwarzkopf

J.S.B.Mitchell

D.Bremner

H.A.El-Gindy

D.Steele

B.Dom

J-R.SackM.H.Overmars

V.Sacristan

O.Aichholzer

R.Pollack

D.H.Rappaport

S.H.Whitesides

D.Eppstein

E.D.Demaine

M.T.Goodrich

D.M.Mount

S-W.Cheng

D.L.Souvaine

S.A.Mitchell

D.PetkovicP.Yanker

M.W.Bern

P.K.Agarwal

I.G.Tollis

T.J.Tautges

H.Edelsbrunner

T.L.Edwards

H.Imai

E.M.Arkin

R.Wenger

S.E.Benzley

P.Plassmann

M.T.deBerg

D.Halperin

T.C.Biedl

W.J.Bohnhoff

J.R.Hipp

P.Belleville

C.Grimm

G.T.Toussaint

M.Yvinec

H.Meijer

Te.Asano

S.S.Skiena

M.Teillaud

H.S.Sawhney

D.Zorin

A.Lubiw

S.Suri

D.T.Lee

R.R.Lober

K.Kedem
E.Welzl

G.Liotta

J.Pach

P.K.Bose

J.C.Clements

S.R.Kosaraju

J.Weeks

D.Letscher

G.Lerman

J.Czyzowicz

A.Aggarwal

H.Everett

B.Zhu

T.K.Dey

E.Trimble

N.AmentaG.D.Sjaardema

R.Tamassia

M.Gorkani

B.Aronov

S.Lazard
T.Roos

G.T.Wilfong

M.L.Demaine

J-M.Robert

T.J.Wilson

S.M.Robbins

R.Seidel

N.Katoh

G.Rote

J.Urrutia

J.S.Vitter

I.Streinu

L.Lopez-Buriek
C.K.Johnson

F.Aurenhammer

S.Parker

J.Matousek

E.Sedgwick

J.O’Rourke

O.Devillers

J.Ashley

J.Hafner

C.Zelle

W.R.Oakes

W.Niblack

K.Mehlhorn

M.E.Houle

J.Hass

A.Hicks

Q.Huang

'

&

$

%

Demo

Read network Geom.net

Net / Partitions / Core / Input

Info / Partition

Operations / Extract from Network / Partition [10,99]

Net / Partitions / Core / Input

Draw / Draw-Partition

Layout / Energy / Kamada-Kawai / Free

Operations / Shrink Network / Partition [1,21]

Draw / Draw-Partition

'

&

$

%

Generalized cores
Vertex property functions

Let N = (V, L, w) be a network, where G = (V, L) is a graph and w : L → IR is
a function assigning values to lines.

A vertex property function on N, or a p function for short, is a function p(v, U),
v ∈ V , U ⊆ V with real values.

'

&

$

%

Examples of vertex property functions

Let N(v) denotes the set of neighbors of vertex v in graph G, and N(v, U) =

N(v) ∩ U , U ⊆ V .

1. p1(v, U) = degU (v)

2. p2(v, U) = indegU (v)

3. p3(v, U) = outdegU (v)

4. p4(v, U) = indegU (v) + outdegU (v)

5. p5(v, U) =
∑

u∈N(v,U) w(v, u), where w : L → IR+
0

6. p6(v, U) = maxu∈N(v,U) w(v, u), where w : L → IR

7. p7(v, U) = number of cycles of length k through vertex v

'

&

$

%

p-cores

The subgraph H = (C, L|C) induced by the set C ⊆ V

is a p-core at level t ∈ IR iff

• ∀v ∈ C : t ≤ p(v, C)

• C is maximal such set.

The function p is monotone iff it has the property

C1 ⊂ C2 ⇒ ∀v ∈ V : (p(v, C1) ≤ p(v, C2))

All among functions p1 – p7 are monotone.

'

&

$

%

Monotone p functions and cores

For monotone function the p-core at level t can be determined by successively
deleting vertices with value of p lower than t.

C := V ;
while ∃v ∈ C : p(v, C) < t do C := C \ {v};

Theorem 1 For monotone function p the above procedure determines the p-core
at level t.

Corolary 1 For monotone function p the cores are nested

t1 < t2 ⇒ Ht2 ⊆ Ht1

'

&

$

%

Example of nonmonotone p function

The p function

p(v, U) =

0 N(v, U) = ∅

1

|N(v, U)|

∑

u∈N(v,U)

w(v, u) otherwise

where w : L → IR+
0 , is not monotone.

'

&

$

%

Local functions

The p function is local iff

p(v, U) = p(v, N(v, U))

The functions p1 – p6 from examples are local; p7 is not local for k ≥ 4.

In the following we shall assume also that for the function p there exists a constant
p0 such that

∀v ∈ V : p(v, ∅) = p0

For a local p function an O(m max(∆, log n)) algorithm for determining p-core at
level t exists (assuming that p(v, N(v, C)) can be computed in O(degC(v))).

'

&

$

%

Determining the hierarchy of p-cores
The hierarchy is determined by the core-number assigned to each vertex – the highest level
value of p-cores that contain the vertex.

INPUT: graph G = (V, L) represented by lists of neighbors
OUTPUT: table core with core number for each vertex
1. C := V ;
2. for v ∈ V do p[v] := p(v, N(v, C));
3. build min heap(v, p);
4. while sizeof(heap) > 0 do begin
4.1. C := C \ {top};
4.2. core[top] := p[top];
4.3. for v ∈ N(top, C) do begin
4.3.1. p[v] := max {p[top], p(v, N(v, C))};
4.3.2. update heap(v, p);

end;
end;

'

&

$

%

Computational geometry value core 46

L.Guibas

M.Sharir

M.vanKreveld

B.Chazelle

J.Snoeyink

A.Garg

D.Dobkin

F.Preparata

J.Hershberger

C.Yap

J.Boissonnat

O.Schwarzkopf

J.Mitchell

M.Overmars

P.Gupta
R.Pollack

D.Eppstein

M.Goodrich

M.Bern

P.Agarwal

I.Tollis

H.Edelsbrunner

E.Arkin

R.Janardan

M.deBerg

D.Halperin

L.Vismara

M.Smid

G.Toussaint

M.Yvinec

M.Teillaud

S.Suri

R.Klein

E.Welzl

G.Liotta

J.Pach

P.Bose

J.Schwerdt

J.Majhi

J.Czyzowicz

R.Tamassia

B.AronovR.Seidel

J.Urrutia

J.Vitter

J.Matousek

C.Icking

J.O’Rourke

O.Devillers

G.diBattista

Pajek

'

&

$

%

Example – Internet Connections

As an example of application of the proposed algorithm we applied it to the routing
data on the Internet network. This network was produced from web scanning data
(May 1999) available from

http://www.cs.bell-labs.com/who/ches/map/index.html
It can be obtained also as a Pajek’s NET file from

http://vlado.fmf.uni-lj.si/
pub/networks/data/web/web.zip
It has 124 651 vertices, 195 029 arcs (loops were removed), ∆ = 151, and average
degree is 3.13. The arcs have as values the number of traceroute paths which
contain the arc.

Using Pajek implementation of the proposed algorithm on 300 MHz PC we
obtained in 3 seconds the p5-cores segmentation presented in the table – there are
nk vertices with p5-core number in the interval (tk−1, tk].

'

&

$

%

... Example – Internet Connections

Table 1: p5-cores of the Routing Data Network at Different Levels.

k t n k t n

1 1 7582 12 2048 490

2 2 9288 13 4096 314

3 4 12519 14 8192 153

4 8 33866 15 16384 48

5 16 33757 16 32768 44

6 32 11433 17 65536 11

7 64 6518 18 131072 9

8 128 3812 19 262144 0

9 256 2356 20 524288 2

10 512 1528 21 1048576 3

11 1024 918

'

&

$

%

... Example – Internet Connections
The program also determined the p5-core number for every vertex. The figure
shows a p5-core at level 25000 of the Internet network – every vertex inside
this core is visited by at least 25000 traceroute paths. In the figure the sizes of
circles representing vertices are proportional to (the square roots of) their p5-core
numbers. Since the arcs values span from 1 to 626826 they can not be displayed
directly. We recoded them according to the thresholds 1000 · 2k−1, k = 1, 2, 3
These class numbers are represented by the thickness of the arcs.

'

&

$

%

134.24.32.161

144.232.8.153

192.205.31.109

192.205.31.125

12.127.9.173

12.127.9.177

12.127.9.181

144.232.5.153

144.232.5.158

192.205.31.242

209.133.31.150
4.0.5.29

137.39.100.14

137.39.108.3

137.39.186.161

144.228.179.5

144.232.5.21

144.232.5.25

146.188.178.150

146.188.178.154

157.130.0.13

192.205.31.206

192.205.31.218

192.205.31.234

204.70.10.146

209.249.0.125

209.249.0.129

12.127.0.30

12.127.0.34

4.1.64.85

4.1.75.137

192.205.36.153

192.205.36.157

12.126.222.245

204.178.16.1

207.140.138.65

