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1 Introduction

This paper contains an overview of the main results and ideas from the last three months
work, together with Anuška Ferligoj and Patrick Doreian, on the project Connecting

Cluster and Network Analysis.

1.1 Basic notions

Let E = {X1, X2, ..., Xn} be a finite set of units. The units are related by binary relations

Rt ⊆ E × E, t = 1, ..., r

which determine a network

N = (E, R1, R2, ..., Rr)

In the following we shall restrict our discussion to a single relation R. It is usually
described by a corresponding binary matrix R = [rij]n×n where

rij =

{

1 XiRXj

0 otherwise

In some applications rij can be a nonnegative real number expressing the strength of the
relation R between units Xi and Xj.

The main goal of block modelling is to identify, in a given network clusters, (classes) of
units which play the same or similar role – have the same or similar connection patterns
to other units. They form a clustering

C = {C1, C2, ...Ck}
∗In visit at the University of Pittsburgh, Department of Sociology (november and december 1990).
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which is a partition of the set E:
⋃

i

Ci = E

i 6= j ⇒ Ci ∩ Cj = 0

Each partition determines an equivalence relation (and vice versa). Let us denote by
∼ the relation determined by partition C. A block model consists of structures obtained
by identifying all units from the same cluster of the clustering C. The partition (ideally)
is constructed by using structural information contained in R and actors in the same
partitioned class are equivalent to each other in terms of R alone. Such actors share
a common structural position within the network. (In general the statement can be
extended to include {Rt}.)

There are two basic approaches to the equivalence of units in a given network:

• the equivalent units have the same or similar connection pattern to the same neigh-
bours; they are interchangeable.

• the equivalent units have the same or similar connection pattern to (possibly) dif-
ferent neighbours; they play the same role in the network.

The first type of equivalence is formalized by the notion of structural equivalence; the
second, by the notion of regular equivalence.

1.2 Structural equivalence

A permutation ϕ : E → E is an automorphism of the relation R iff

∀X, Y ∈ E : (XRY ⇒ ϕ(X)Rϕ(Y ))

The units X and Y are structurally equivalent, we write X ≡ Y , iff the permutation
(transposition) π = (XY ) is an automorphism of the relation R.

With other words: X and Y are structurally equivalent iff

s1. XRY ⇔ Y RX
s2. XRX ⇔ Y RY
s3. ∀Z ∈ E \ {X, Y } : (XRZ ⇔ Y RZ)
s4. ∀Z ∈ E \ {X, Y } : (ZRX ⇔ ZRY )

or in the matrix form: Xi ≡ Xj iff

s1’. rij = rji

s2’. rii = rjj

s3’. ∀k 6= i, j : rik = rjk

s4’. ∀k 6= i, j : rki = rkj

The matrix form of the definition of structural equivalence can be extended also to the
case when rij are real numbers.
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1.3 Regular equivalence

The equivalence relation ∼= on E is a regular equivalence on network N = (E, R) iff for
all X, Y, Z ∈ E, X ∼= Y implies both

R1. XRZ ⇒ ∃W ∈ E : (Y RW ∧ W ∼= Z)
R2. ZRX ⇒ ∃W ∈ E : (WRY ∧ W ∼= Z)

1.4 Establishing block models

The definitions of equivalences describe the ideal states. The real networks can be seen
as perturbed ideal networks. For this reason the procedures for network block analysis
usually seek for the (ideal) clustering C which fits the best the given network data.

There are two main approaches to block modeling problems based on the structural
equivalence and its relaxations.

• indirect approach: reduction to the standard data analysis problems (cluster analy-
sis, multidimensional scaling) by determining a dissimilarity matrix between units
which is compatible with the selected type of equivalence;

• direct approach: construction of criterion function P (C) which measures the fit of
the clustering C to the network data, and solving the corresponding optimization
problem. For this purpose a relocation procedure from cluster analysis can be
adapted.

2 The indirect approach via measuring the equiva-

lence of pairs of units

joint work with A. Ferligoj and P. Doreian

This section contains results from [5].
Although the definition of structural equivalence is local it has global implications –

structurally equivalent units behave in the same way also to all other units. A position
is defined in terms of all other units in a network. This can be formally expressed in
different ways.

2.1 Properties of pairs of units

Let q(U, V ) be some numeric structural property depending only on units U and V and
the relation R, but not on the names (labels) of units. Formally expressed: A property
q : E ×E → IR is structural if for every automorphism ϕ of the relation R and every pair
of units X, Y ∈ E it holds

q(X, Y ) = q(ϕ(X), ϕ(Y ))

For example

q(U, V ) = r(U, V )
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or as another example

q(U, V ) = number of common neighbours of units U and V

or

q(U, V ) = length of the shortest path from U to V

For other examples see [10].
Then, if X ≡ Y we have

q1. q(X, Y ) = q(Y, X)
q2. q(X, X) = q(Y, Y )
q3. ∀Z ∈ E \ {X, Y } : q(X, Z) = q(Y, Z)
q4. ∀Z ∈ E \ {X, Y } : q(Z, X) = q(Z, Y )

The property q is sensitive if the properties q1 – q4 imply also that X ≡ Y .
Therefore we can describe each unit U by a vector

[U ] = [q(U, X1), q(U, X2), . . . , q(U, Xn), q(X1, U), . . . , q(Xn, U)]

and define the dissimilarity between units U, V ∈ E as

d(U, V ) = D([U ], [V ])

where D is a dissimilarity between the corresponding descriptions. Some examples of such
dissimilarities and the discussion of their appropriateness is given in the section 2.3.1.

2.2 Properties of units

Let t(U) be the structural property of the unit U depending only on the unit U and
relation R, but not on the names of units. The property t : E → IR is structural if for
every automorphism ϕ of the relation R and every unit X ∈ E it holds

t(X) = t(ϕ(X))

Then we have
X ≡ Y ⇒ t(X) = t(Y )

Examples of such properties are

t(U) = degree (number of neighbours) of unit U

or (see [3])

t(U) = number of units at distance d from the unit U

or (see [11])

t(U) = number of triads of type x at the unit U
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For other examples see [16].
The collection of structural properties t1, t2, . . . , tm is complete (for structural equiva-

lence) iff for each pair of units X and Y it satisfies the condition

(∀i, 1 ≤ i ≤ m : ti(X) = ti(Y )) ⇒ X ≡ Y

Again, we can define the description of the unit U as

[U ] = [t1(U), t2(U), . . . , tm(U)]

and the dissimilarity between units U and V as

d(U, V ) = D([U ], [V ])

where D is some (standard) dissimilarity between real vectors.
In the case when the dissimilarity D has the property

D([U ], [V ]) = 0 ⇒ [U ] = [V ]

and the properties t1, t2, . . . , tm are complete, it holds

d(X, Y ) = 0 = D([X], [Y ]) ⇔ [X] = [Y ] ⇔ ∀i : ti(X) = ti(Y ) ⇔ X ≡ Y

Therefore we finally have
d(X, Y ) = 0 ⇔ X ≡ Y

REMARK: The triads are not complete. Counterexample: path of length 3. The
extreme units have the same triadic spectrum, but they are not structurally equivalent.

2.3 Matrix dissimilarities

2.3.1 Dissimilarities

The following is a list of dissimilarities for measuring the similarity between units Xi and
Xj:

Manhattan distance

dm(Xi, Xj) =
n

∑

s=1

(|qis − qjs| + |qsi − qsj|)

Euclidean distance

dE(Xi, Xj) =

√

√

√

√

n
∑

s=1

((qis − qjs)2 + (qsi − qsj)2)

Truncated Manhattan distance

ds(Xi, Xj) =
n

∑

s=1

s6=i,j

(|qis − qjs| + |qsi − qsj|)
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Truncated Euclidean distance [13]

dS(Xi, Xj) =

√

√

√

√

√

n
∑

s=1

s6=i,j

((qis − qjs)2 + (qsi − qsj)2)

Corrected Manhattan-like dissimilarity (p > 0)

dc(p)(Xi, Xj) = ds(Xi, Xj) + p · (|qii − qjj| + |qij − qji|)

Corrected Euclidean-like dissimilarity [9]

de(p)(Xi, Xj) =
√

ds(Xi, Xj)2 + p · ((qii − qjj)2 + (qij − qji)2)

Corrected dissimilarity

dC(p)(Xi, Xj) =
√

dc(p)(Xi, Xj)

It is easy to verify that all expressions from the list define a dissimilarity, i.e., they
have the properties

d1. d(X, Y ) ≥ 0
d2. d(X, X) = 0
d3. d(X, Y ) = d(Y, X)

A dissimilarity d which has also the properties

d4. d(X, Y ) = 0 ⇒ X = Y
d5. d(X, Y ) + d(Y, Z) ≥ d(X, Z)

is called a distance. Each of the dissimilarities from the list can be assessed to see whether
or not it is also a distance.

REMARK: Because different units may have equal descriptions (rows and columns)
the property

d(Xi, Xj) = 0 ⇒ Xi = Xj

does not hold. Therefore the listed dissimilarities can not be distances in a strict sense.
Nevertheless we can require a slightly relaxed property

d(Xi, Xj) = 0 ⇔ Xi ∼ Xj

REMARK: In the case q = r all the dissimilarities from the list are invariant to the
complementing of relation R → E × E \ R = R̄, i.e., d(R)(X, Y ) = d(R̄)(X, Y ).
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2.3.2 Compatibility

In procedures based on structural equivalence we can expect the best results if we use a
dissimilarity d which is compatible with structural equivalence, i.e.,

Xi ≡ Xj ⇔ d(Xi, Xj) = 0

Not all the dissimilarities from the list are compatible.
If q is sensitive, for dissimilarities dm and dE only

d(Xi, Xj) = 0 ⇒ Xi ≡ Xj

holds. The converse does not hold. For the matrix

R =

[

0 1
1 0

]

the units X1 and X2 are structurally equivalent, but dm(X1, X2) = 2 and dm(X1, X2) =√
2, for q = r.
If q is a structural property, for dissimilarities dS and ds only

Xi ≡ Xj ⇒ d(Xi, Xj) = 0

holds. The converse does not hold. For the matrix

R =

[

1 1
0 0

]

for q = r, dS(X1, X2) = ds(X1, X2) = 0, but the units X1 and X2 are not structurally
equivalent.

If structural property q is sensitive the dissimilarities dc, dC and de are compatible
with the structural equivalence.

2.3.3 Triangle inequality

Which of the dissimilarities from the list satisfy the triangle inequality

d(Xi, Xk) + d(Xk, Xj) ≥ d(Xi, Xj)

It holds for dissimilarities dm and dE.
We have to show that the quantity

∆ = d(Xi, Xk) + d(Xk, Xj) − d(Xi, Xj)

is always nonnegative.
By complete enumeration of all possible cases for 0/1 matrices on the computer we

found that there exist counterexamples for ds. For example, for the matrix






0 0 0
1 0 1
1 0 0
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we get
∆s = |0 − 0| + |1 − 1| + |1 − 1| + |0 − 0| − |0 − 1| − |1 − 0| = −2

The same matrix is also a counterexample for dS.
For the dissimilarity dc(p) there also exist counterexamples. For example, for the

matrix






0 0 0
1 0 1
0 1 0







we get

∆c(2) = p · (|0 − 0| + |0 − 0|) + |1 − 1| + |0 − 1| +
+ p · (|1 − 1| + |0 − 0|) + |1 − 0| + |0 − 0| −
− p · (|0 − 0| + |1 − 0|) − |0 − 1| − |0 − 1| =

= 1 + 1 − (2 + p) = −p

Therefore the triangle inequality does not hold for all p > 0.
For p = 2 all the counterexamples have either the form 1 + 1 − 4 = −2 or the form

1 + 3− 6 = −2. Since
√

1 +
√

1−
√

4 = 0 and
√

1 +
√

3−
√

6 > 0 the dissimilarity δC(2)
satisfies the triangle inequality for 0/1 matrices.

For p = 1 all the counterexamples have either the form 1 + 1 − 3 = −1 or the form
1 + 2− 4 = −1. Since

√
1 +

√
1−

√
3 > 0 and

√
1 +

√
2−

√
4 > 0 the dissimilarity δC(1)

satisfies the triangle inequality for 0/1 matrices.
It is easy to show that also the dissimilarity dC(p), p = 1, 2 satisfies the triangle

inequality for 0/1 matrices.
Similary, by complete enumeration, we establish that the dissimilarity

δe(p)(Xi, Xj) =
√

p · ((qii − qjj)2 + (qij − qji)2) + (qik − qjk)2 + (qki − qkj)2

satisfies the triangle inequality for 0/1 matrices for p = 1, 2. From this we can prove that
de also satisfies triangle inequality for 0/1 matrices.

For real vectors the dissimilarity δe(2) does not satisfy the triangle inequality. For a
counterexample let us consider the matrix







5 9 6
0 7 4
4 6 6







We obtain

∆e = δe(Xi, Xk) + δe(Xk, Xj) − δe(Xi, Xj) =
√

35 +
√

35 −
√

178 = −1.51

For the dissimilarities δe(1) and δC(1) over real vectors the answer is unknown. The
random search for a counterexample with more than 1000000 trials failed.

For δC(2) over real numbers Martin Juvan and Marko Petkovšek [21] proved that the
triangle inequality holds.
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For a, b ∈ {0, 1} the following equality

(a − b)2 = |a − b|

holds. This implies some additional relations between dissimilarities from the list

dE =
√

dm

dS =
√

ds

de(p) = dC(p)

It is interesting that for symmetrical matrices, quv = qvu for all u and v, we can prove
that the dissimilarities ds and dc (and therefore also dS, dC and de) satisfy the triangle
inequality.

3 Direct approach: optimization

joint work with P. Doreian and A. Ferligoj

This section contains results from [5, 6].
The problem of determining the classes of equivalent units is called the blocking prob-

lem. It is very similar to the clustering problem.
Assume that we have a single relation network N = (E, R). Let Θ denote the set of all

equivalence relations of a selected type (for example, regular or structural equivalences)
over N . Every equivalence relation ∼ on E determines a partition C of E, and vice versa.

Suppose that we are able to construct a criterion function P (C) with the properties:

P1. P (C) ≥ 0
P2. P (C) = 0 ⇔∼∈ Θ

Then we can express the blocking problem as an optimization problem:

Determine the clustering C∗ ∈ Φ such that

P (C∗) = min
C∈Φ

P (C)

In the case when Θ is empty the optimization approach gives the solution(s) which differ(s)
the less from some ideal case.

Given a clustering C = {C1, C2, . . . , Ck}, let B(Cu, Cv) denote the set of all ideal blocks
corresponding to block R(Cu, Cv). Then the global error of clustering C can be expressed
as

P (C) =
∑

Cu,Cv∈C

min
B∈B(Cu,Cv)

d(R(Cu, Cv), B)

where the term d(R(Cu, Cv), B) measures the difference (local error) between the block
R(Cu, Cv) and the ideal block B. The function d have to be compatible with the selected
type of equivalence.

In the following we shall construct the function d for regular equivalence.
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3.1 Criterion for structural equivalence

In paper [6] we proposed an approach to construction of criterion functions reflecting
the notion of regular equivalence. The same approach can be used also in the case of
structural equivalence.

From the definition of structural equivalence it follows that there are four possible
ideal diagonal blocks B(C, C)

Type 1. bij = 0
Type 2. bij = δij

Type 3. bij = 1 − δij

Type 4. bij = 1

where δij is the Kronecker delta function and i, j ∈ C.
For the nondiagonal blocks R(Cu, Cv), u 6= v only blocks of type 1 and type 4 are

possible.
Given a clustering C = {C1, C2, . . . , Ck}, let B(Cu, Cv) denote the set of all ideal blocks

corresponding to block R(Cu, Cv). Then the global error of clustering C can be expressed
as

P (C) =
∑

Cu,Cv∈C

p(Cu, Cv)

and
p(Cu, Cv) = min

B∈B(Cu,Cv)
d(R(Cu, Cv), B)

where the obvious choice for d is

d(R(Cu, Cv), B) =
∑

X∈Cu,Y ∈Cv

|rxy − bxy|

It is easy to verify that so defined criterion function P (C) is sensitive to structural equiv-
alence

P (C) = 0 ⇔ C defines structural equivalence

Beside this, it is invariant to the transformation of complementing the relation R →
E × E \ R.

The selected dissimilarity between blocks is based on the assumption that the error
0 → 1 is equiprobable to the error 1 → 0. In the case that this assumption is not valid
we can introduce the weights α and β which balance both types of errors. Let B∗ be a
solution of optimization problem from the right side of the expression for p(Cu, Cv). Then
we can redefine p, for example, as follows

p(Cu, Cv) = α card{(X, Y ) ∈ Cu × Cv : rxy > b∗xy}
+ β card{(X, Y ) ∈ Cu × Cv : rxy < b∗xy}

Selecting large α (α = 100) and small β (β = 1), optimizing P (C) we are primarily seeking
solutions with the least number of errors of the type 0 → 1 and, as a secondary criterion,
among them solutions with the least number of errors of the type 1 → 0.

In the special, but in applications surprisingly frequent, case when the number of 0’s
equals the number of 1’s in the block R(Cu, Cv), we decided to select 1’s block for B∗ if
α ≥ β; and 0’s block otherwise.

10



4 Criterion for regular equivalence

The construction of the criterion function for regular equivalence we shall base on the
following observation.

PROPOSITION 4.1 Let C = {Ci} be a clustering corresponding to a regular equiva-

lence ∼= on the network N = (E, R). Then each block R(Cu, Cv) is either null or it has

the property that there is at least 1 in each of its rows and in each of its columns.

Conversely, if for a given clustering C each block has this property then the correspond-

ing equivalence relation is a regular equivalence.

From the proposition it follows that regular equivalence produces two types of blocks:

• null blocks which have all entries 0; and

• 1-covered blocks, which have in each row and in each column at least one 1.

Therefore we can use as a measure of regularity of a block the quantity

d(R(Cu, Cv), B) =

{

# of 1-covered rows/columns B is null block
# of 0 rows/columns B is 1-covered block

From the proposition it follows that so defined criterion function P (C) is sensitive to
regular equivalence

P (C) = 0 ⇔ C defines regular equivalence

If necessary we can introduce in d the weights to tune the importance of 1 → 0 and
0 → 1 errors.

4.1 Establishing block models

For solving the block modeling problem we use a local optimization algorithm:

Determine the initial clustering C;
repeat:

if in the neighborhood of the current clustering C
there exists a clustering C ′ such that P (C ′) < P (C)
then move to clustering C ′ .

In the algorithm the neighborhood of a given clustering is defined by the following clus-
tering transformations:

• moving a unit from one cluster to another cluster;

• interchanging of two units from different clusters.
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We repeat the local optimization search with several random initial clusterings and
preserve the best 10 obtained solutions.

In tables 1 and 2 the (locally) best solutions for Sampson liking data for the criterion
based on structural equivalence are given.

For determining regular equivalencies in large data sets the dynamic clusters method

from cluster analysis can be adapted. It was introduced and elaborated by E. Diday and
his collaborators [12]. For two decades it has been used very successfully to solve different
clustering problems, especially for large data sets.

The proposed criterion function to measure departures of a given clustering from exact
regular partition [6] combined with the dynamic clusters method to search for regular
clusterings of a given network [4].
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1 1 1 1 1 1 1 1 1
1 3 4 5 6 2 7 2 4 5 9 6 8 0 1 3 7 8

John Bosco 1 0 0 • 0 0 ? ? 1 0 0 0 0 0 0 0 • 0 0
Amand 13 0 0 0 0 0 ? 1 ? 0 • 0 0 0 0 0 0 0 •

Hugh 14 • 0 0 • 0 ? ? 1 0 0 0 0 0 0 0 0 0 0
Boniface 15 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
Albert 16 0 0 0 • 0 1 1 ? 0 0 0 0 0 0 0 0 0 0
Gregory 2 • 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
Mark 7 0 0 0 0 • 1 0 1 0 0 0 0 0 0 0 0 0 0
Winfrid 12 • 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
Peter 4 0 0 0 0 0 0 0 0 0 1 ? • 0 0 • 0 0 0
Bonaventur 5 0 0 0 0 0 0 0 0 1 0 1 0 0 0 • 0 0 0
Ambrose 9 0 0 0 0 0 0 0 • ? 1 0 0 • 0 0 0 0 0
Berthold 6 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
Victor 8 0 0 0 0 0 0 0 0 1 ? 1 • 0 0 0 0 0 0
Romuald 10 0 • 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
Louis 11 0 0 • 0 0 0 0 0 ? 1 ? 0 • 0 0 0 0 0
Basil 3 • • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1
Elias 17 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 1 0 1
Simplicius 18 0 0 0 0 0 • 0 0 0 0 0 0 0 0 0 1 1 0

Table 1: Sampson Data - Liking / LocOpt k = 5, α = 1, β = 1

4.2 Multicriteria approach to block models

Multicriteria clustering algorithms [15] provide an alternative approach for obtaining
structural and regular equivalences in multi-relational networks. Appropriate dissim-
milarity measures between units and criterion functions are defined [14].

5 Other topics

5.1 Metric degree of dissimilarity

Let d(X, Y ) be a dissimilarity over E. Then

dr(X, Y ) = (d(X, Y ))r, r > 0

is also a dissimilarity. Evidently d0 satisfies the triangle inequality. Therefore we can define
the metric degree of dissimilarity d as the greatest R ∈ IR such that for all r, 0 < r ≤ R
the dissimilarity dr satisfies the triangle inequality.

5.2 Two additional network semirings

At the last seminar meeting [2] I presented the application of semirings to balancing and
clusterability problem for signed graphs.

Studying the network literature I noticed that the semiring

({0, 1, 2, 3}, max, min)

can be applied to determine the connectedness matrix [18, 133].
Another example of a semiring I found reading the book [17, 34-38,111-112]. For

computing the Freeman’s indices we need the number of u-v geodesics for each pair of

13



1 1 1 1 1 1 1 1 1
1 5 2 7 2 4 6 4 5 6 8 9 1 0 3 3 7 8

John Bosco 1 0 0 ? ? 1 1 ? 0 0 0 0 0 0 0 • 0 0 0
Boniface 15 0 0 1 1 1 ? ? 0 0 0 0 0 0 0 0 0 0 0
Gregory 2 1 ? 0 1 1 ? ? 0 0 0 0 0 0 0 0 0 0 0
Mark 7 ? ? 1 0 1 ? 1 0 0 0 0 0 0 0 0 0 0 0
Winfrid 12 1 ? 1 1 0 ? ? 0 0 0 0 0 0 0 0 0 0 0
Hugh 14 1 1 ? ? 1 0 ? 0 0 0 0 0 0 0 0 0 0 0
Albert 16 ? 1 1 1 ? ? 0 0 0 0 0 0 0 0 0 0 0 0
Peter 4 0 0 0 0 0 0 0 0 1 1 ? ? 1 0 0 0 0 0
Bonaventur 5 0 0 0 0 0 0 0 1 0 ? ? 1 1 0 0 0 0 0
Berthold 6 0 0 0 0 0 0 0 1 1 0 ? 1 ? 0 0 0 0 0
Victor 8 0 0 0 0 0 0 0 1 ? 1 0 1 ? 0 0 0 0 0
Ambrose 9 0 0 0 0 • 0 0 ? 1 ? 1 0 ? 0 0 0 0 0
Louis 11 0 0 0 0 0 • 0 ? 1 ? 1 ? 0 0 0 0 0 0
Romuald 10 0 0 0 0 0 0 0 1 1 ? ? 1 ? 0 0 • 0 0
Basil 3 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
Amand 13 0 0 0 • 0 0 0 0 • 0 0 0 0 0 ? 0 ? 1
Elias 17 0 0 • 0 0 0 0 0 0 0 0 0 0 0 1 ? 0 1
Simplicius 18 0 0 • 0 0 0 0 0 0 0 0 0 0 0 1 ? 1 0

Table 2: Sampson data – liking / LocOpt k = 5, α = 100, β = 1, P = 941

vertices (u, v). This numbers can be obtained by computing the closure of relation matrix
over the following geodetic semiring:

First we transform relation R to a matrix which has for entries pairs defined by

(d, n)u,v =

{

(1, 1) (u, v) ∈ R
(∞, 0) (u, v) /∈ R

where d is the length of the shortest path and n is the number of shortest paths.
In the set A = ĪR

+
0 × IN we define the operations

(a, i) ⊕ (b, j) = (min(a, b),











i a < b
i + j a = b
j a > b

)

(a, i) � (b, j) = (a + b, i.j)

It is not difficult to verify that (A,⊕,�) is indeed a semiring with zero (∞, 0) and identity
(0, 1). It is also closed, with a closure

(a, i)? =

{

(0,∞) a = 0, i 6= 0
(0, 1) otherwise

5.3 Citation networks

Reading Norm’s and Pat’s papers on citation networks [19, 20] I noticed that the arc
weights (number of different paths which contains the arc) can be more efficiently com-
puted by first computing for each vertex v the number N+(v) of ways it can be reached
from initial vertices and the number N−(v) of ways it can reach the terminal vertices of
network. The weight w(u, v) of the arc (u, v) is then

w(u, v) = N+(u) · N−(v)
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The program in pascal implementing this idea is given in the appendix. It assumes that
the vertices of the network are topologically sorted.

Because for each internal vertex in the network the number of in-going paths equals
the number of out-going paths for the weights w the Kirchoff’s node law holds. This can
be seen also formally

∑

(t,v)∈R

w(t, v) =
∑

(t,v)∈R

N+(t) · N−(v) = (
∑

(t,v)∈R

N+(t)) · N−(v) = N+(v) · N−(v)

and

∑

(v,u)∈R

w(v, u) =
∑

(v,u)∈R

N+(v) · N−(u) = N+(v) ·
∑

(v,u)∈R

N−(u) = N+(v) · N−(v)

The quantity N+(v) · N−(v) equals to the number of all paths through the vertex v.
By connecting all initial vertices to a single source s and all terminal vertices to a single

sink t and adding the arc (t, s) we can extend the Kirchoff’s law to the entire network.
The max-flow (number of all paths from initial to terminal vertices) can be used as

an appropriate normalization factor.
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Path Count Procedure

PROCEDURE count(VAR a, b: entries; VAR c: counters);

VAR

norm : Boolean;

v, u, t : vertex;

p, q : p_arc;

w : LongInt;

BEGIN

norm := (NOT source) AND forwrd;

FOR v := 0 TO NumUnitsp DO b[v] := NIL;

v := start; t := 0;

IF norm THEN c[v] := 0 ELSE c[v] := 1;

REPEAT

p := a[v];

IF norm AND (v > 0) THEN c[v] := c[v] + 1;

w := c[v];

WHILE p <> NIL DO BEGIN

u := p^.vtx; q := p; p := p^.nxt;

c[u] := c[u] + w;

{ transfer current arc (v,u) to inverse relation }

q^.vtx := v; q^.nxt := b[u]; b[u] := q;

END;

IF c[v] = 0 THEN c[v] := 1;

u := order[v]; order[v] := t; t := v; v := u;

UNTIL v = 0;

start := t;

END {count};

PROCEDURE counter;

VAR

bfirst { backward successors lists entries }

: entries;

BEGIN

FOR v := 0 TO NumUnitsp DO BEGIN fcount[v] := 0; bcount[v] := 0 END;

writeln(lst); writeln(lst,’forward count’); forwrd := TRUE;

count(ffirst,bfirst,fcount);

writeln(lst); writeln(lst,’backward count’); forwrd := FALSE;

count(bfirst,ffirst,bcount);

END {counter};
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