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Abstract

The clustering problem (with constraints) can be posed as an optimization prob-
lem determined by the clustering criterion function and the set of feasible cluster-
ings. In the paper an attempt of justification of agglomerative methods for solving
the clustering problem and the conditions for their applicability are presented. It
is shown that under certain (general) asumptions about the form of the criterion
function and about the structure of the set of feasible clusterings:

e the agglomerative methods are ”greedy” methods for solving the clustering
problem;

e these methods stop in the maximal clustering in the set of feasible clusterings
partially ordered by clustering inclusion;

e every feasible clustering can be reached by the method (choosing appropriate
dissimilarities between units).
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1 Preliminaries

The clustering problem (with constraints) can be posed as an optimization problem
(Ferligoj and Batagelj, 1982, 1983):
Determine the clustering (= set of clusters) C* for which

P(C*) = min P(C)

Cece
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where @ is the set of feasible clusterings (determined with constraints) and P : C — R{
is the clustering criterion function.

With few exceptions the clustering problem is too hard to be exactly solved efficiently.
Therefore approximative/heuristic methods have to be used. Among these agglomerative
(hierarchical) and local optimization methods are the most popular. In the paper an
attempt of justification of agglomerative clustering methods and the conditions for their
applicability are presented, generalizing some ideas from Ferligoj and Batagelj (1983).

Let us introduce some notions which we shall need in the following.

The clustering C is a complete clustering if it is a partition of the set of units £. We
shall denote by II(E) the set of all complete clusterings of E. Two among them

O={{X}:XeE

and
I={E}

deserve to be denoted by special symbols.
The set of feasible clusterings ® can be decomposed into "strata” (layers)

®, ={C e ®:card(C) =k}
It also determines the feasibility predicate
P(C)=Ce @
defined on P(P(FE) \ {0}); and conversely
® ={C e P(P(E)\{0}) :: 2(C)}
In the set of all clusterings the relation of clustering inclusion C can be introduced by
CiCCo=VC€C, (L €Cy: C1NCy € {0,C4}

When C; C C; holds we say that the clustering C; is a refinement of the clustering C,.

It is well known that (II(EF),C) is a partially ordered set (even more, semimodular
lattice; Aigner, 1979). Because any subset of partially ordered set is also partially ordered,
we have:

L1. Let @ C TI(E) then (®,LC) is a partially ordered set.

The clustering inclusion determines two related relations (on ®):

Cﬂ:CQEClECQ/\Cl#CQ

and
ClECQEClc(JQ/\_'HCE‘I’I(01[:C/\C[:CQ)

It is not difficult to show that:
L2. C; C Cy = card(Cy) > card(C,)



2 Conditions on the structure of the set of feasible
clusterings

In the following we shall assume that the set of feastible clusterings ® satisfies the following
conditions:

F1. ®CII(E)
F2. the feasibility predicate ® is local, i.e., it has the form
2(C)= A ¢(C)

CeC

(*) where ¢(C) is a predicate defined on P(E)\ {0}) (clusters). The intuitive meaning of
#(C) is:
#(C) = the cluster C is "good”

Therefore the locality condition can be read: a ”"good” clustering C € & consists of
7good” clusters.

F3. Oco

F4. the predicate ® has the property of binary heredity with respect to the fusibility
predicate ¥ (Cy, Cy), i.e.,

01, 02 ?é @ VAN 01 N 02 = @ N (Z)(C'l) AN ¢(Cg) N w(C’l, 02) = (f)(Cl U 02)

This condition can be read: fusion of two ”related” clusters from ”good” clustering results
in a "good” clustering.

F5. the predicate ¥ is compatible with clustering inclusion Ci.e.,
VC1,Co € @: (C1 E CyACy\ Co ={C1,Co} = ¢(C1,Ca) Vp(Cy, C))
F6. the "interpolation” property holds in @, i.e.,
VC1,Cy € @ : (C; C CyAcard(Cy) > card(Cy) +1=3IC € ®: (C;C CACL Cy))

Example 1 Tt is easy to verify that the sets of feasible clusterings ®*(R), i = 1,2,4,5
from Ferligoj and Batagelj (1983) satisfy the conditions F1 - F6. For instance in the case
of ®1(R) we have:

®(C) = (C,RNC x C) is a weakly connected graph

and
1[)(01,02) =dX € Cl,Y € Cy: (XRY\/ YRX)

But, in the case of ®*(R), with
#(C)=(C,RNC x C) is a strongly connected graph

and
¢(01,02) =dX € Cl,Y ce(Cy: XRY NX € Cl,YE Cy:YRX
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the property F6 fails (in general). The counterexample is given in figure 5 in Ferligoj and
Batagelj (1983), for which we have

{{1,2},{3,4},{5,6}} ={{1,2,3,4,5,6, }}

(|
Let us list some consegences of conditions F1 — F6. The less trivial proofs are given
in the appeddix.

Cl. VCe®:0LCC
C2. VX eE:¢({X})
C3. the predicate ¢ has the property of binary divisibility, i.e.,

¢(C) A card(C’) >1= 301,02 7&! (01 N 02 = (Z) A Cl U CQ =CA ¢(Cl) N (15(02))

In other words: each nontrivial ”good” cluster can be split in two ”"good” clusters.
C4. let us define

P (C)={(C,C,) : C1,Co #NC1NCo=0ANCLUCy =C A d(Cr) A p(Co) ANp(Ch, Ca)}
then we can express a stronger result than C3
#(C) Acard(C) > 1= P(C)#0

which implies: each ”good” clustering, different from O, can be obtained by fusing two
"related” clusters in a ”"good” clustering.

C5. CizC=> card(Cl) = C&I‘d(CQ) +1
C6. let us define a function r : @ — IN by the equality

r(C) = card(O) — card(C)

It is easy to verify the propreties
C6.1. r(0O)=0
C6.2. C,=Co=7r(Cy)=7r(Cy)+1
Therefore 7 is a rank function — the Jordan-Dedekind condition holds in (®,C).
C7. let us denote with

Max®={Ce®:-3C' € ®:CLC C'}
the set of all maximal clusterings in (®,C), then

vVC e & \ Max @301,02 eC: w(C]_,CQ)



3 Criterion function

In this section we shall slightly generalize some definitions and results from Ferligoj and
Batagelj (1982).

We shall call a dissimilarity between clusters a function d : (C1,Cy) — Ry which is
symmetric, i.e., d(Cy, Cy) = d(Cy, Cy).

Let (R{,®,0,<) be an ordered abelian monoid. Then the criterion function P is
compatible with dissimilarity d over &® iff:

(i) P(C) = D »(C)

cec
(ii) VX € E: p({X}) =0
(iii) VC C E: (¢(C) Acard(C) > 1 =

p(C) = min (p(C1) & p(C2) & d(C1, Cy))

(C1,C2)e¥(C)

Now we are ready to state our first theorem:

Theorem 1 Let P be compatible with d over ®, @& distributes over min, and F1 — F5
hold, then

P(Ck) - errellq{lk P(C) - C'1‘C'2IélgI€1<I’k+l (P(C) @ d(Cl’ CQ))
¥(C1,C2)

The proof of the theorem is given in the appendix.
The equality from theorem 1 can also be written in the form

PG = o, (P(O) @ g (0. C2)

from where we can see the following ”greedy” approximation:

P(C}) = P(Ciy) @ _ min  d(C1, ()
D25 g4

¥(C1,C2)

which is the basis for the following agglomerative (binary) procedure for solving the
clustering problem :

1. k := n(= card(F)); C(k) := O;
2. while HCZ',CJ' € C(k) (7, 75 A ’@b(cl, 02)) repeat

2.1. (Cp, Cy) = argmin{d(C;, C;):i # j A Y(C;i, Cj) };
2.2. C:=C,UCy; k:=k—1;

2.3. C(k) =C(k+1)\{C,, C,} U{C};

2.4. determine d(C, C;) for all Cy; € C(k)

3. m:=k

Note that, because it is based on an approximation, this procedure is not an exact proce-
dure for solving the clustering problem. But, because of the nature of clustering problem
(Garey and Johnson, 1979; Shamos, 1976; Brucker, 1978), it seems that we are forced to
search for and to use such procedures.

In other respects this procedure has some nice properties:
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Theorem 2 All clusterings C(k),k =n,n—1,...,m obtained by the described procedure
are feasible. It holds
Ck)e®,, k=nn—1,...,m

and
C(m) € Max ®

An agglomerative procedure is said to be compatible with ® iff:

(i) every clustering obtained by the procedure is feasible,

(ii) every feasible clustering can be obtained by the procedure if we can at each step fuse
any pair of "related” clusters.

For our procedure it can be shown:

Theorem 3 If ® satisfies the conditions F1 — F6 then the described procedure is compat-
wble with ®.

The proofs of theorem 2 and theorem 3 are given in the appendix.

4 Conclusion

The results of this paper show that if the set of feasible clusterings ® satisfies the condi-
tions F'1 — F6, and the criterion function P is compatible with dissimilarity d, then the
described agglomerative procedure can be used for solving the clustering problem.

A Some proofs
Properties C3 and C4
Let C € P(E) \ {0} be a ”good” cluster. Then after F2 and C2 the clustering
CC)=0\{{X}: XeC}u{C}
belongs to the set of feasible clusterings ®. Combining this with C1 we have
OLC C(0O)

Let C be also nontrivial (card(C) > 1). In this case we can ”"execute” the following
procedure

1. C:=0;

2. while card(C) > card(C(C)) + 1 repeat

2.1. C := C', where C' is a feasible clustering satisfying
CrC C'C C(O);

3. {01,02} :C\C(C)



Some comments. The existence of the clustering C’ in the step 2.1. is assured by F6. The
termination of the while loop follows from the observation that the difference card(C) —
card(C(C)) is positive and is diminshed for at least one after each execution of the body
of the loop. At the termination of the while loop the equality card(C) = card(C(C)) + 1
holds. Considering step 3, F'5 and the definition of clustering inclusion we obtain C3 and
C4.

Property C7

Let C € ® be a nonmaximal clustering. Then there exists a clustering C;, € Max @ such
that C C Cyy.
Again we construct a procedure similar to the previous one :

1. C = Cy;

2. while card(C) > card(C') + 1 repeat

2.1. C’ := C”, where C" is a feasible clustering satisfying
ccc’'c

3. {Cl, 02} =C \ CI

with the same justification. Now, C7 follows directly from step 3 and F5.

Theorem 1

We start with a sequence of equalities

P(C;) = min P(C)= min @ p(D) =

Ce Ce€®k pec
- cgcllienék(Degac}p(D) @ p(C)) =
- C&I:ien«pk(Deg\a{c}p(D) ® o, in,  (P(C1) ®p(Co) ® d(C), G)) =
= L, (Cl,égig;(c)(Deg\B{c}P(D) & (p(Ch) ® p(Cy) ® d(Cy, Cy)) =
= cln, o B WC.Ge P pD)=

De(C\{C}HU{C1,C2}
= min (d(C1,Cy) ® @ p(D))

01,02€C €@ ,
¥(C1,C2) DeC

All the equalities, except the last one, are trivial consequences of the theorem assumptions.
To show that the last equality holds we must show that both expressions consist of
the same ”terms”.
Let us first show that

C' = (C\{CH U{C1,Ca}) € Bpsa

Because C € ®y it holds VD € C : ¢(D). Evidently C' € TI(E); 1. From (C1,Cs) €
P (C) we see that ¢(C1) A ¢(Cs) holds. Therefore VD € C' : ¢(D), and finally C' € Py ;.
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Now, let us show that also each C' € ®;,; can be expressed in the form required by
the left side of the equality. Let C;,Cy € C' such that ¢(C1, Cs) holds and C' = C; U Cs.
Evidently (C},Cy) € ¥(C). Let us denote

C = (C'\{C1,C}) u{C}

Because C' € @y, it holds VD € C': ¢(D). From (Cy,C,) € ¥(C) and F4 it follows
that ¢(C') holds. Therefore C € ®. But, then we can express C’ in the required form

C' = (C'\ {C},Co} U{C, UG\ {CL U Co} U{Cy, G} = C\ {CYU{CL, Cs}

We showed that each term from the left side expression can be expressed in the form
required by the right side expression and vice-versa. Because of the idempotence of the
operation min the question of uniqueness need not to be considered. Therefore the last
equality also holds.

Theorem 2

The step 1 of the clustering procedure combined with F3 implies C(n) = O € ®,,.

Let us now show: if C(k+1) € ®; then, if it exists, C(k) € ®;. From the assumption
C(k +1) € ®;44 it follows VC € C(k + 1) : ¢(C); and from step 2.1 of the procedure
¥(C/p,C/q). Therefore, by F4, ¢(C, U C,) holds with a desired consequence C(k) € ®y.

The proprety C(m) € Max ® follows directly from the line 2 of the procedure and C7.

Theorem 3

The requirement (i) from the definition of the compatibility is already proved in theorem
2.

To prove that also (ii) holds we proceed as follows. Let C € ®. If C # O then there
exists by F6 a sequence of feasible clusterings

O:CO EC1 ECQ E...Eck,1 [:Ck:C

such that, by F5, each C; is obtained fusing two clusters of C; ;.
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