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Approaches to Clustering

� local optimization

� dynamic programming

� hierarchical methods; agglomerative methods; Lance-Williams formula;
dendrogram; inversions; adding methods

� leaders and the dynamic clusters method

� graph theory (next, 3. lecture);
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Local optimization
Often for a given optimization problem ��� ��� � there exist rules which relate to each
element of the set� some elements of� . We call them local transformations.

The elements which can be obtained from a given element are called neighbors –
local transformations determine the neighborhood relation � 	 � 
 � in the set� .
The neighborhood of element � � � is called the set � � � ��
 ��� � � � � � .
The element � � � is a local minimum for the neighborhood structure � � � � � iff

� � � � � � � � � � � �� � �� �

In the following we shall assume that � is reflexive, � � � � � � � � .

They are the basis of the local optimization procedure

select � � ; � �
 � � ;
while � � � � � � � � � �� ��� � � � � do � �
 � ;

which starting in an element of � � � � repeats moving to an element determined
by local transformation which has better value of the criterion function until no such
element exists.
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Clustering neigborhoods

Usually the neighborhood relation in local optimization clustering procedures over

� � ��� � is determined by the following two transformations:

� transition: clustering ��� is obtained from � by moving a unit from one cluster to
another

�� 
 � �  �"! # �! $ � �&% �"! #  � � ' � �! $ % � � ' � �

� transposition: clustering ��� is obtained from � by interchanging two units from
different clusters

�� 
 � �  �! # �! $ � �% � �! #  � � ( � �% � � ) � � �! $  � � ) � �% � � ( � �

The transpositions preserve the number of units in clusters.
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Hints

Two basic implementation approaches are usually used: stored data approach and
stored dissimilarity matrix approach.

If the constraints are not too stringent, the relocation method can be applied directly
on * ; otherwise, we can transform using penalty function method the problem to an
equivalent nonconstrained problem �� � �+ � with+ � � � 
 � � � �-, ./ � � � where

. 01 is a large constant and/ � � ��
 1 , for � � � , and/ � � � 0 1 otherwise.

There exist several improvements of the basic relocation algorithm: simulated
annealing, tabu search, . . . (Aarts and Lenstra, 1997).

The initial clustering � � can be given; most often we generate it randomly.
Let 2 354 6
 7 8 � ' � ! # . Fill the vector 2 with the desired number of units in each
cluster and shuffle it:

for 9 �
 : downto ; do begin < �
 => :?@ A ��B � 9 � ; 4C > 9 � 2 3 9 6 � 2 3 < 6 � end;
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Quick scanning of neighbors

Testing� � �� ��� � � � � is equivalent to� � � �ED � � �� � 0 1 .
For the F criterion function

G � � � � �� ��
 � � � �D � � �� ��
 9 �! # �, 9 �! $ � D 9 �! � # � D 9 �! � $ �

Additional simplifications can be done considering relations between! # and! � # , and
between! $ and! � $ .

Let us illustrate this on the generalized Ward’s method. For this purpose it is useful to introduce
the quantity

H IKJ L M J N OQP R ST U VXW ST Y
Z I"[ O]\ Z I"^ O \ _ I [ M ^ O

Using the quantity H IKJ L M J N O we can express ` IKJ O in the form ` IKJ OP a bT VT cd e bT c and the equality
mentioned in the introduction of the generalized Ward clustering problem: ifJ Lf J N P g then

Z IKJ Lh J N O\ ` IKJ Lh J N O P Z IKJ L O \ ` I J L Oji Z I J N O \ ` I J N Oji H IKJ L M J N O
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k for the generalized Ward’s method

Let us analyze the transition of a unit[ l from clusterJ L to clusterJ N :
We haveJnm L P J L op [ l q , Jnm N P J Nh p"r l q ,

Z I J L O]\ ` IKJ L OP Z I JEm L O \ ` IKJEm L Oji H I"[ l M JEm L OP IZ IKJ L Ots Z I"[ l O O\ ` IKJEm L Oji H I"[ l M JEm L O

and
Z I JEm N O\ ` I JEm N OQP Z I J N O]\ ` IKJ N Oji H I"[ l M J N O

From _ I"[ l M [ l OQP u it follows H I"[ l M J L OP H I [ l M Jvm L O . Therefore

` I Jwm L OP Z IKJ L O \ ` IKJ L Os H I"[ l M J L OZ I J L Os Z I [ l O ` IKJwm N OP Z I J N O\ ` I J N Oji H I"[ l M J N OZ IKJ N O i Z I [ l O

and finally

xy I{z M z m OP ` I J L Oji ` IKJ N Os ` IKJEm L Os ` IKJEm N OP

P Z I [ l O]\ ` IKJ N Ots H I [ l M J N OZ IKJ N O i Z I [ l O s Z I"[ l O]\ ` IKJ L Os H I"[ l M J L OZ I J L Os Z I [ l O

In the case when _ is the squared Euclidean distance it is possible to derive also expression for

corrections of centers (Späth, 1977).
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Dynamic programming
Suppose that |} ~ � * � ��� �� 
 � , � 
 B � ; ��� � � . Denoting� � � � � � � 
 � � C �� � � � � we
can derive the generalized Jensen equality (Batagelj, Korenjak and Klavžar, 1994):

� � ��� � � �

��

� ��
9 � � � � � � � * �

�} ~� �� ��� � �� �X� �� � �� ��� � � �� � �� � � � � �� � ���  ! � � D B �-� 9 �! � � � 0 B

This is a dynamic programming (Bellman) equation which, for some special con-
strained problems, that keep the size of * � small, allows us to solve the clustering
problem by the adapted Fisher’s algorithm.
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Hierarchical methods
The set of feasible clusterings * determines the feasibility predicate � � � � � � � *

defined on ¡ � ¡ � � �  � � � � ; and conversely * � � � � ¡ � ¡ ��� �  � � � � � � � � � � .

In the set * the relation of clustering inclusion ¢ can be introduced by
� � ¢ � £ � � ! � � � � �! £ � � £ � ! �¥¤ ! £ � � � �! � �

we say also that the clustering � � is a refinement of the clustering � £ .

It is well known that �� ��� � � ¢ � is a partially ordered set (even more, semimodular
lattice). Because any subset of partially ordered set is also partially ordered, we have:
Let * 	 � ��� � then � * � ¢ � is a partially ordered set.

The clustering inclusion determines two related relations (on * ):

� �¦ � £ � � � ¢ � £¥§ � �� 
 � £ – strict inclusion, and

� �¦©¨ � £ � � � ¦ � £ § ª � � � * � � � �¦ � § � ¦ � £ � – predecessor.
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Conditions on the structure of the set of feasible clusterings

We shall assume that the set of feasible clusterings * 	 � ��� � satisfies the following
conditions:

F1. « � � � � � � � � � � � *

F2. The feasibility predicate � is local – it has the form � � � � 
 ¬ ­ ®¯ ° �! �

where ° �! � is a predicate defined on ¡ ��� �  � � � (clusters).

The intuitive meaning of ° �! � is: ° �! � � the cluster! is ’good’. Therefore the
locality condition can be read: a ’good’ clustering � � * consists of ’good’ clusters.

F3. The predicate � has the property of binary heredity with respect to the fusibility
predicate ± �! � �! £ � , i.e.,

! � ¤ ! £ 
 � § ° �! � �§ ° �! £ �§ ± �! � �! £ �&² ° �! � % ! £ �

This condition means: in a ’good’ clustering, a fusion of two ’fusible’ clusters
produces a ’good’ clustering.
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. . . conditions

F4. The predicate ± is compatible with clustering inclusion ¢ , i.e.,

� � � � � £ � * � � � �¦ � £³§ � �  � £ 
 �! � �! £ � ² ± �! � �! £ �&´ ± �! £ �! � � �

F5. The interpolation property holds in * , i.e., � � � � � £ � * �

� � �¦ � £³§ µ¶· ¸ � � � � 0 µ¶· ¸ � � £ �, B ² � � � * � � � �¦ � § � ¦ � £ � �

These conditions provide a framework in which the hierarchical methods can be
applied also for constrained clustering problems * � ��� ��¹ � � � � � .
In the ordinary problem both predicates ° �! � and ± �! ( �! ) � are always true – all
conditions F1-F5 are satisfied.
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Criterion functions compatible with a dissimilarity between clusters

We shall call a dissimilarity between clusters a function º � �! � �! £ ��» IR¼ � which is
symmetric, i.e., º �! � �! £ ��
 º �! £ �! � � .
Let � IR¼ � �� �1 �� � be an ordered abelian monoid. Then the criterion function

� � � � 
 ­ ® ¯ 9 �! � , �½ � � � 9 � �½ � � 
 1 is compatible with dissimilarity º

over * iff for all! 	 � holds:

° �! �§ µ¶· ¸ �! � 0 B ² 9 �! �
 �} ~¾ ­ � ¿ ­ À Á ®Â ¾ ­ Á � 9 �! � �-� 9 �! £ �-� º �! � �! £ � �

Theorem 2.1 A F criterion function is compatible with dissimilarity º defined by

º �! ( �! ) ��
 9 �! ( % ! ) � D 9 �! ( �ED 9 �! ) �

In this case, let �� 
 �  �! ( �! ) � % �"! ( % ! ) � ,! ( �! ) � � , then

� � �� �ED � � � �
 º �! ( �! ) �
University of Konstanz June 2002
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Greedy approximation

Theorem 2.2 Let� be compatible with º over * ,� distributes over �} ~ , and
F1 – F5 hold, then

� � � �� ��
 �} ~¯ ®Ã � � � � �
 �} ~� �Ä � À � � �� � Å �Æ � � �Ä � À �
�� � � �� º �! � �! £ � �

The equality from theorem 2.1 can also be written in the form

� � � �� ��
 �} ~¯ ®Ã � Å � �� � � �-� �} ~� �Ä � À � �Æ � � �Ä � À �
º �! � �! £ � �

from where we can see the following ’greedy’ approximation:

� � � �� �ÈÇ � � � ��¼ � � � �} ~� �Ä � À � �ÊÉ � Å �Æ � � �Ä � À �
º �! � �! £ �

which is the basis for the following agglomerative (binary) procedure for solving the
clustering problem.
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Agglomerative methods

1. � �
 : ; � � � � �
 � � � � � � � � � ;
2. while � ! Ë �! Ì � � � � � � ��Í � 
 Î § ± �! Ë �! Ì � � repeat
2.1. �! ( �! ) � �
 ¶· Ï �} ~ � º �! Ë �! Ì � � Í � 
 Î § ± �! Ë �! Ì � � ;
2.2. ! �
 ! ( % ! ) ; � �
 � D B ;
2.3. � � � � �
 � � � , B �  �! ( �! ) � % �! � ;
2.4. determine º �! �! ' � for all! ' � � � � �

3. A �
 �

Note that, because it is based on an approximation, this procedure is not an exact
procedure for solving the clustering problem.

For another, probabilistic view on agglomerative methods see Kamvar, Klein,
Manning (2002).

Divisive methods work in the reverse direction. The problem here is how to efficiently
find a good split �! ( �! ) � of cluster! .
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Some dissimilarities between clusters

We shall use the generalized Ward’s c.e.f.

9 �! ��
 B
;C �! � Ð ¿ÒÑ ® ­

C �½ �¨ C ��Ó �¨ ? �½ � Ó �

and the notion of the generalized center! of the cluster! , for which the dissimilarity
to any cluster or unit U is defined by

? �&Ô �! ��
 ? �! � Ô �
 B
C �! � � Ð ® ­

C �½ �¨ ? �½ � Ô �D 9 �! � �

Minimal: º�Õ �! # �! $ ��
 �} ~Ð ® ­ U ¿ÒÑ ® ­ Y? �½ � Ó �
Maximal: º×Ö �! # �! $ ��
 � ¶ØÐ ® ­ U ¿ Ñ ® ­ Y? �½ � Ó �

Average: º�Ù �! # �! $ ��
 B

C �! # �C �! $ � Ð ® ­ U ¿ÒÑ ® ­ Y
C �½ �¨ C � Ó �¨ ? �½ � Ó �
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. . . some dissimilarities

Gower-Bock: º]Ú �! # �! $ �
 ? �! # �! $ ��
 º�Ù �! # �! $ � D 9 �! # �

C �! # �
D 9 �! $ �

C �! $ �

Ward: º]Û �! # �! $ ��
 C �! # �C �! $ �

C �! # % ! $ � º]Ú �! # �! $ �

Inertia: º×Ü �! # �! $ �
 9 �! # % ! $ �

Variance: º]Ý �! # �! $ ��
 Þ ¶· �! # % ! $ �
 9 �! # % ! $ �

C �! # % ! $ �

Weighted increase of variance:

º $ �! # �! $ ��
 Þ ¶· �! #% ! $ �D C �! # �¨ Þ ¶· �! # �, C �! $ �¨ Þ ¶ · �! $ �

C �! # % ! $ �


 ºßÛ �! # �! $ �

C �! # % ! $ �

For all of them Lance-Williams-Jambu formula holds:

º �! ( % ! ) �! ' � 
 . � º �! ( �! ' �, . £ º �! ) �! ' �, à º �! ( �! ) �,

, á â º �! ( �! ' �ED º �! ) �! ' � â, ã ��ä �! ( �, ã £ ä �! ) �, ã å ä �! ' �
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Lance-Williams-Jambu coefficients

method . � . £ à á ã æ ä �! æ �

minimum �£ �£ 1 D �£ 1 D

maximum �£ �£ 1 �£ 1 D

average ç èç èé ç éç èé 1 1 1 D

Gower-Bock ç èç èé ç éç èé D ç è ç éç Àèé 1 1 D

Ward ç èêç èé ê ç é êç èé ê D ç êç èé ê 1 1 D

inertia ç èêç èé ê ç é êç èé ê ç èéç èé ê 1 D ç ëç èé ê 9 �! æ �

variance ç Àèêç Àèé ê
ç Àé êç Àèé ê

ç Àèéç Àèé ê 1 D ç ëç Àèé ê 9 �! æ �

w.i. variance ç Àèêç Àèé ê
ç Àé êç Àèé ê D ç ê ç èéç Àèé ê 1 1 D

C ( 
 C �! ( � ,C ( ) 
 C �! ( % ! ) � ,C ( ) ' 
 C �! ( % ! ) % ! ' �
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Hierarchies

The agglomerative clustering procedure produces a series of feasible clusterings

� � : � , � � : D B � , . . . , � � A � with � � A � � | ¶ Ø * (maximal elements for ¢ ).

Their union ì 
 íî �ï Õ � � � � is called a hierarchy and has the property

� ! ( �! ) � ì � ! ( ¤ ! ) � � � �! ( �! ) �

The set inclusion 	 is a tree or hierarchical order on ì . The hierarchy ì is complete
iff� � ì .

For ð 	 � we define the smallest cluster! ñ � ð � from ì containing ð as:
c1. ð 	 ! ñ � ð �

c2. � ! � ì � � ð 	 ! ² ! ñ � ð � 	 ! �

! ñ is a closure on ì with a special property

ò ó� ! ñ � � � �� � �&² ! ñ � � � �� � ��¹ ! ñ � � � �� � ò � ��
 ! ñ � � � � ò � ��
 ! ñ � ��� � ò � �
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Level functions

A mapping ô � ì » IR¼ � is a level function on ì iff
l1. � � � � � ô � � � � ��
 1

l2. ! ( 	 ! ) ² ô �! ( �� ô �! ) �

A simple example of level function is ô �! ��
 µ¶ · ¸ �! �ED B .

Every hierarchy / level function determines an ultrametric dissimilarity on�

ã � � �� �
 ô �! ñ � � � �� � � �

The converse is also true (see Dieudonne (1960)): Let? be an ultrametric on � .
Denote õ � � � = �
 ��� � � �? � � �� �� = � . Then for any given set ö ¹ IR¼ the set

� � ö ��
 � õ � � � = � � � � � � = � ö � % � � � � � % � � � � � � � � �

is a complete hierarchy, and ô �! ��
 ¸} ¶ � �! � is a level function.

The pair � ì � ô � is called a dendrogram or a clustering tree because it can be visualized
as a tree.
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Association coefficients, Monte Carlo, ÷ ø ù ú

CLUSE – maximum û üý ü ü þ üý ÿ ÿ �

Kulczynski

Driver-Kroeber
Jaccard
Baroni-Urbani
Simpson
Russel-Rao
Braun-Blanquet

�� �

Pearson
Michael
Yule

�� �

Sokal-Michener
– bc –
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Inversions

Unfortunately the function ô � �! � 
 º �! ( �! ) � ,! 
 ! ( % ! ) is not always a level
function – for some º s the inversions, º �! ( �! ) � 0 º �! ( % ! ) �! ' � , are possible.

Batagelj (1981) showed:

Theorem 2.3 ô � is a level function for the Lance-Williams procedure � . � , . £ , à , á �

iff:

(i) á , �} ~ � . � � . £ �� 1
(ii) . �, . £ � 1

(iii) . �, . £ , à � B

The dissimilarity º has the reducibility property (Bruynooghe, 1977) iff

º �! ( �! ) �� � � º �! ( �! ' �� � � º �! ) �! ' �� � ² º �! ( % ! ) �! ' �� �

Theorem 2.4 If a dissimilarity º has the reducibility property then ô � is a level
function.
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Adding hierarchical methods

Suppose that we already built a clustering tree ì over the set of units� . To add a new
unit½ to the tree ì we start in the root and branch down. Assume that we reached
the node corresponding to cluster! , which was obtained by joining subclusters! (

and! ) . There are three possibilities: or to add½ to! ( , or to add½ to! ) , or to form
a new cluster �½ � .

Consider again the ’greedy approximation’� � � �� � 
 � � � ��¼ � �, º �! ( �! ) � where

º �! ( �! ) ��
 �} ~ ­ U ¿ ­ Y ® ¯ 	� Å � º �! # �! $ � and � �Ë are greedy solutions.

Since we wish to minimize the value of criterion � it follows from the greedy
relation that we have to select the case corresponding to the maximal among values

º �! ( % �½ � �! ) � , º �! ) % �½ � �! ( � and º �! ( % ! ) � �½ � � .
This is a basis for the adding clustering method. We start with a tree on the first two
units and then successively add to it the remaining units. The unit½ is included into
all clusters through which we branch it down.
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... adding hierarchical methods
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About the minimal solutions of � � ��� �

Theorem 2.5 In the (locally with respect to transitions) minimal clustering for the
problem �� � � F� �

F� � � � � �
 ­ ® ¯ � ® ­
C � � �¨ ? � � �! �

each unit is assigned to the nearest representative: Let � � be (locally with respect to
transitions) minimal clustering then it holds:

� ! # � � � � � � ! # � ! $ � � �  �! # � �? � � �! # �� ? � � �! $ �
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Proof
Let �m � � ��� � "! L #! N $%"&  ! L � (' $ #! N&  ' $ $ be any clustering neighbouring with respect to
transitions to the clustering � � . From the theorem assumptions ) � � � %* ) � �m % and the type of criterion
function we have:

+ �! L %-, + �! N % * + �! L �' %, + �! N& ' %

and by proposition 1.4.b:* + �! L %/. 0 �' %(1 2 �' #! L %, + �! N& ' % .
Therefore + �! N % * + �! N& ' %. 0 �' % 1 2 �' #! L % , and

0 �' % 1 2 �' #! L % * + �! N& ' %. + �! N % �

� + �! N& ' %. � + �! N %, 0 �' %(1 2 �' #! N % %-, 0 �' %(1 2 �' #! N %

� 0 �' %(1 2 �' #! N %-, � + �! N& ' %. W ST Y3 R
0 �(4 %(1 2 �(4 #! N % %

By the definition of cluster-error function of type R the second term in the last line is negative. Therefore

* 0 �' % 1 2 �' #! N %
Dividing by 0 �' %65 7 we finally get

2 �' #! L % * 2 �' #! N %
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Leaders method
In order to support our intuition in further development we shall briefly describe a
simple version of dynamic clusters method – the leaders or � -means method, which is
the basis of the ISODATA program (one among the most popular clustering programs)
and several recent ’data-mining’ methods. In the leaders method the criterion function
has the form SR.

The basic scheme of leaders method is simple:

determine � � 8 � �
 � � 8
repeat

determine for each! � � its leader! ;
the new clustering � is obtained by assigning each unit

to its nearest leader
until leaders stabilize

To obtain a ’good’ solution and an impression of its quality we can repeat this
procedure with different (random) � � .
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The dynamic clusters method
The dynamic clusters method is a generalization of the above scheme. Let us denote:

9 – set of representatives

: 	 9 – representation

; – set of feasible representations

ð � � 
 ; » IR¼ � – extended criterion function

< � � 
 ; » ; – representation function

= � � 
 ; » � – clustering function

and
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Basic scheme of the dynamic clusters method

the following conditions have to be satisfied:

W0. � � � �
 �} ~ > ®Â ð � � � : �

the functions < and = tend to improve (diminish) the value of the extended criterion
function ð :

W1. ð � � � < � � � : � �� ð � � � : �

W2. ð � = � � � : � � : �� ð � � � : �
then the dynamic clusters method can be described by the scheme:

� �
 � � 8 : �
 : � 8

repeat

: �
 < � � � : � 8

� �
 = � � � : �

until the clustering stabilizes
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Properties of DCM

To this scheme corresponds the sequenceä î 
 � �î � :î � � : � IN determined by
relations

:î ¼ � 
 < � �î � :î � ¶ ~ ¸ �î ¼ � 
 = � �î � :î ¼ � �

and the sequence of values of the extended criterion function 7î 
 ð � �î � :î � . Let
us also denote 7 � 
 � � � � � . Then it holds:

Theorem 2.6 For every : � IN, 7î ¼ � � 7î , 7 � � 7î ,
and if for � 0 A ,ä � 
 ä Õ then � : � A � 7î 
 7Õ .

The Theorem 2.6 states that the sequence 7î is monotonically decreasing and
bounded, therefore it is convergent. Note that the limit of 7î is not necessarily 7 � –
the dynamic clusters method is a local optimization method.
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... types of of DCM sequences

Type A: ª � � � A � IN � � 0 A � ä � 
 ä Õ

Type B: � � � A � IN � � 0 A � ä � 
 ä Õ

Type B � : Type B with � 
 A , B
The DCM sequence �ä î � is of type B if

� sets� and ; are both finite.
For example, when we select a representative of! among its members.

� � ã 0 1 � � : � IN � �ä î ¼ �� 
 ä î ² 7î D 7î ¼ � 0 ã �
Because the sets � and consequently � are finite we expect from a good dynamic
clusters procedure to stabilize in finite number of steps – is of type B.
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Additional requirement

The conditions W0, W1 and W2 are not strong enough to ensure this. We shall try to
compensate the possibility that the set of representations ; is infinite by the additional
requirement:

W3. ð � � � < � � � : � �
 ð � � � : �² : 
 < � � � : �

With this requirement the ’symmetry’ between � and ; is distroyed. We could
reestablish it by the requirement:

W4. ð � = � � � : � : � �
 ð � � � : �² � 
 = � � � : �

but it turns out that W4 often fails. For this reason we shall avoid it.

Theorem 2.7 If W3 holds and if there exists A � IN such that 7Õ ¼ � 
 7Õ , then also

:Õ ¼ � 
 :Õ .
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Simple clustering and representation functions

Usually, in the applications of the DCM, the clustering function takes the form

= � ; » � . In this case the condition W2 simplifies to: ð � = � : � � : � � ð � � � : �

which can be expressed also as = � : � � | } ~ ¯ ®? ð � � � : � . For such, simple
clustering functions it holds:

Theorem 2.8 If the clustering function = is simple and if there exists A � IN such
that :Õ ¼ � 
 :Õ , then for every : � A � ä î 
 ä Õ .

What can be said about the case when < is simple – has the form < � � » ; ?

Theorem 2.9 If W3 holds and the representation function < is simple then:

a. < � � ��
 ¶· Ï �} ~ > ®Â ð � � � : �
b. � � � A � IN � � 0 A � Í � IN � ä �¼ Ë
 ä Õ ¼ Ë
c. � A � IN � : � A � 7î 
 7Õ

d. if also = is simple then � A � IN� : � A � ä î 
 ä Õ
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Original DCM

In the original dynamic clusters method (Diday, 1979) both functions = and < are
simple – = � ; » � and < � � » ; .

We proved, if also W3 holds and the functions = and < are simple, then:

G0. < � � ��
 ¶ · Ï �} ~> ®Â ð � � � : �
and

F0. = � : � � | } ~ ¯ ®? ð � � � : �
In other words, given an extended criterion function ð , the relations G0 and F0
define an appropriate pair of functions < and = such that the DCM stabilizes in finite
number of steps.
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. . . Clustering and Networks
In the next, 3. lecture we shall discuss

� clustering with relational constraint

� transforming data into graphs (neighbors)

� clustering of networks; dissimilarities between graphs (networks)

� clustering of vertices / links; dissimilarities between vertices

� clustering in large networks
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