
L OGO TO SVG

Vladimir Batagelj
Department of mathematics, FMF, University of Ljubljana

Jadranska 19, 1000 Ljubljana, Slovenia
e-mail: vladimir.batagelj@uni-lj.si

Abstract
A picture produced by logo on the screen can be mirrored into its SVG (Scal-
able Vector Graphics) description on the file. These files provide a high quality
records (snap-shots) of logo screen to be included in other documents – web
pages.
Logo2SVG is a collection of logo commands, for MSW Logo, that by redefin-
ing turtle commands support the mirroring of turtle movement into the SVG.

Keywords
Logo, SVG, screen snap-shot, redefining logo primi-

tives, MSW Logo

1 Introduction

The usual approach to get snap-shots of logo screen for inclusion in different documents (manu-
als, tutorials, papers, books) is to save (a part of) the screen as a bitmap. Adjusting such bitmap
picture to the dimensions required by a document we can considerably lose on its quality.

In the paperLogo to Postscript[1] another approach was proposed. UsingLogo2PS (a
collection of redefined basic logo commands) a picture produced by logo on the screen can be
mirrored into its PostScript description on the file. These files provide a high quality snap-shots
of logo screen and can be included in other documents, clipped and scaled to the available space.

In this paper we present a parallel collectionLogo2SVG that supports the mirroring of turtle
movement into the SVG.

2 SVG – Scalable Vector Graphics

2.1 What is SVG ?

SVG - Scalable Vector Graphics [6] is a new web graphics standard. The SVG development
group published in October 1998 the requirements on SVG and in February 1999 the first draft.
Several improved versions followed. The last version was published in November 2000 as a
candidate release.

Technically, SVG is a 2D-graphics markup language based on XML [5]. It is compatible
with other web standards: HTML, XML Namespace, Xlink, Xpointer, CSS 2, DOM 1, Java,
ECMA/Javascript, Unicode, SMIL 1.0, . . . [4, 8, 7, 9]. It allows us to include in HTML docu-
ments pictures described by their structure – composition of curves and shapes. Since the SVG
viewer is not integrated yet into web browsers we need, to view SVG pictures, to install it as a
plug-in. An excellent SVG plug-in for Windows was produced by Adobe [10].

The SVG pictures are not static (as standard bitmaps GIF, JPEG, PNG). The SVG viewer
provides options to zoom in (to see details) and out (to see global view), to move the picture,
to search for text, . . . Besides this, using built-in animation capabilities or Javascript program
support, the pictures can be made alive and interactive, SVG files are relatively small and inde-
pendent of output devices and computer platforms.

To get some impression about SVG see some examples from:
http://sio.edus.si/list/1/svg/svg06.htm

2.2 Applications of SVG

SVG pictures can be produced by drawing tools. On Windows we can use last versions of
Adobe Illustrator, Corel Draw, WebDraw (by Jasc) and Mayura [11, 12, 13, 14]. But special
programs for visualization of obtained data/results will produce most SVG pictures. See, for
example: Social patterns and structures in Vienna [15] and European countries [16].

Other applications include: data visualization, presentations (like Power Point), maps (GIS),
layouts, educational pictures, . . .

UsingLogo2SVG we can produce SVG pictures also with MSW Logo.

2.3 A simple example in SVG

Here is a simple example of picture description in SVG

<svg>
<circle cx="120" cy="65" r="30"

style="fill:yellow;stroke:black;stroke-width:3;"/>
<text style="fill:red;" x="100" y="55">EuroLogo 2001</text>

</svg>

It creates yellow circle with black border containing red inscriptionEuroLogo 2001 .

2.4 Embedding SVG pictures in web pages

To insert a SVG picture into a HTML document we use theEMBEDtag. For the picture from
our simple example we have:

<EMBED SRC="./svgfiles/simple.svg" NAME="simplex"
HEIGHT="100" WIDTH="300"
TYPE="image/svg-xml"
PLUGINSPAGE="http://www.adobe.com/svg/viewer/install/">

The attributeSRCdetermines the location (URL) of the SVG file;NAMEbecomes important
in advanced applications using Javascript or Java. The attributesHEIGHTandWIDTHare oblig-
atory and determine the size of rectangle in which the picture is rendered. The value ofTYPEis
the MIME-type of the file – for a SVG file it can beimage/svg or image/svg-xml . The
attributePLUGINSPAGEdirects the user that has not a SVG viewer installed on his computer,
to the web site from which he can obtain a viewer.

3 Redefining logo primitive commands

Berkeley logo [2] and its adaptation for Windows, MSWlogo [3] allow the user to redefine also
the primitive commands. In general this is a dangerous, but sometimes very useful, practice. To
enable this possibility we have first to switch-on the special (system) variableREDEFP

MAKE "REDEFP "true

To redefine commands we shall use two logo commands

COPYDEFnewname oldname

that makesnewnamea procedure identical tooldname; and

DEFINE procname[params body]

that defines a procedure with nameprocname, parameters listparamsandbody– sequence of
lists containing instruction lines.

Since we want to add the generation of SVG code to the turtle moving and related com-
mands, the general pattern of redefinitions will be

COPYDEF ".cmd" cmd
DEFINE " cmd[[params] [ext1] [. cmd params] [ext2]]

We first save the original definition of the primitive commandcmdas . cmd. Afterwards we
redefinecmdby surrounding the application

. cmd params

of original command with additionsext1andext2.
For example the commandsFORWARDandSETPENCOLORare redefined as follows

COPYDEF ".forward "FORWARD
DEFINE "FORWARD [[d][.forward :d .move]]
COPYDEF ".setpencolor "SETPENCOLOR
DEFINE "SETPENCOLOR [[c]

[IF AND :.draw :.shape [messagebox [Logo2SVG]
[SetPC Ignored. Not allowed in Shape] STOP]]

[.setpencolor :c]
[.EndPath MAKE ".pc .conv :c .BegPath]

]

4 Logo to SVG

To useLogo2SVG we simply load theLogo2SVG.LGO file. It defines the following com-
mands:

SVGInit
Redefines turtle commands to mirror the turtle movement into the SVG.SVGInit is
executed onLogo2SVG load.

SVGExit
ErasesLogo2SVG commands and variables.

BegPic :p :bbox :pen :d
Initializes the filep.SVG for a new SVG picture.bbox = [xll, yll; xur, yur] determines
the screen bounding box;d determines the precision – decimal places of real numbers
written top.SVG; andc selects the type of line caps (butt , round , square).

The parametersbbox, pen andd are optional. Their default values are
bbox = [−300 − 300 300 300], pen = round , d = 2

EndPic
Ends the current picture on the SVG file.

BegShape :w :pc :fc
Starts a new shape with border widthw, border colorpc and fill color fc. Between
BegShape andEndShape these attributes should not be changed; alsoPUcommand is
not allowed.

EndShape :t
Ends the drawing of a shape. The listt contains logo commands that determine a point in
the interior of the shape, required by the logoFILL command – the(FILL "true) is
used. After the fill the position before thet moves is restored.

and some auxiliary commands.

Figure 1: Pictures from examples.

4.1 Examples

To start tracing the turtle movement to the SVG file(s) we execute theBegPic filenamecom-
mand. Then we run the logo commands that produce the picture. We finish tracing by command
EndPic

For example:

BegPic "test
CS SetPenSize [8 8]
REPEAT 8 [REPEAT 8 [

SetPenColor (LIST random 256 random 256 random 256)
FD 50 RT 45] RT 45]

EndPic

produces the picture presented on the left side of Figure1.
The shape commandsBegShape andEndShape were introduced because the logic of

filling in logo is different from that in SVG.
Logo2SVG partially supports also the use of fonts. The use of both is illustrated with the

picture on the right side of Figure1, obtained by the following command:

TO Smiley
IF NOT definedp "svginit [PRINT "|Load Logo2SVG.LGO first| STOP]
BegPic "smiley

Cs Ht SETSCREENCOLOR [100 240 100] PU SETPOS [0 0] PD
BegShape 4 [255 0 0] [255 255 0]

CIRCLE 220
EndShape [SETPOS [0 0]]
PU SETPC [0 0 0] SETPOS [238 120] SETHEADING 180
SETTEXTFONT [[Times New Roman] -350 0 0 400 0 0 0 0 3 2 1 34]
LABEL "|:-)|
SETPC [0 0 255] SETPOS [-220 -210] SETHEADING 90
SETTEXTFONT [[Comic Sans MS] -40 0 0 800 0 0 0 0 3 2 1 18]
LABEL "Smiley
SETPC [255 255 255] SETPOS [80 -210]
(LABEL "Smesko "Smeš\;ko)

EndPic
END

Figure 2: Sierpinski curve of order 9 and a Zoom-in.

Note that the eyes, nose and mouth of Smiley are produced byLABEL "|:-)| ; and that
the font size is given by a negative number.

The following example shows how to draw magenta Sierpinski curve of order 9 filled with
green – see the left side of Figure2. On the right side a zoom-in to the obtained SVG picture is
presented.

TO Sierp :n :a :h :k
IF :n = 0 [FD :k STOP]
RT :a Sierp :n - 1 (-:a) :h :k LT :a FD :h
LT :a Sierp :n - 1 (-:a) :h :k RT :a

END
TO Sierpinski :n :d :w

IF NOT definedp "svginit [PRINT "|Load Logo2SVG.LGO first| STOP]
BegPic (WORD "Sierpinski :n)

PU SETPOS [-230 -230] PD SetScreenColor [255 255 000]
BegShape :w [200 000 200] [000 255 000]

REPEAT 4 [Sierp :n 45 :d/sqrt 2 5*:d/6 RT 45 FD :d/sqrt 2 RT 45]
EndShape [SetPos [-228 -230]]

EndPic
END
Sierpinski 9 8 2

5 SomeLogo2SVG implementation details

5.1 Control

TheLogo2SVG logic is controlled by the following control variables.
.draw – true when SVG mirroring is active. Needed for internal interruptions of mirroring

– for example inEndShape .
.path – true when new path/shape is built.
.act – true for nonempty path.
.shape – true when new shape is built.

Figure 3: Random patterns.

5.2 Coordinate system

The Logo and SVG coordinate systems are different. In Logo the origin of the coordinates is
placed in the center of the screen. The directions of axes follow the mathematical conventions.
In SVG the origin is in the upper left corner and the y-axis is directed downwards.

In Logo2SVG all computations with coordinates are done by regular Logo movements. To
get the corresponding SVG coordinates the Logo coordinates are used (XCOR, YCOR) and
transformed into SVG coordinate system as in the command.move :

TO .move
IF :.draw [

IFELSE PENDOWNP [MAKE ".act "true TYPE "\ L]˜
[.EndPath TYPE "|<path d="M| MAKE ".path "true]
(TYPE FORM XCOR+:.x0 :.m :.d "\ FORM :.y0-YCOR :.m :.d)

]
END

(x0 , y0) are the coordinates of the Logo origin in the SVG coordinates. The command.move
builds a path by segments using SVG path commandsM(move to) andL (line to).

5.3 Paths and shapes

Turtle graphics is essentially a sequence of paths and shapes. Every change of path parameters
(color, width, pen position -PU, PD) starts a new path. In descriptions of shapes these changes
are not allowed. Besides this, shapes are also filled with color.

New shapes are overlaying the existing, as can be seen from examples in Figure3 produced
by the commandWall :

TO RndColor
OP (LIST RANDOM 256 RANDOM 256 RANDOM 256)

END
TO Wall :n

CS HT PU
BegPic "wall

REPEAT :n [
BegShape 3 RndColor RndColor

MAKE "a 21 + RANDOM 60 MAKE "x (RANDOM 320) - 200
MAKE "b 14 + RANDOM 47 MAKE "y (RANDOM 340) - 200
SETXY :x :y PD
REPEAT 2 [FD :b RT 90 FD :a RT 90]

EndShape [FD :b/2 RT 90 FD :a/2]
PU

]
EndPic

END
Wall 100

5.4 Label

TheLABEL command also needs a special treatment. In Logo the current position determines
the upper left corner of the text box; while in SVG it determines the origin of the baseline. In
this version ofLogo2SVG only fonts with negative font size are supported.

SVG supports also Unicode characters. To allow the Unicode output to SVG theLABEL
command was extended with additional optional parameter. The command(LABEL screen
unicode) writes the textscreenon Logo screen andunicodeinto SVG file. An example of the
use of extendedLABEL is given at the end of the commandSmiley – š is an entity
representing the characterš with Unicode code 353.

COPYDEF ".label "LABEL
DEFINE "LABEL [[t [u :t]]

[MAKE ".ls POS .label :t]
[IF :.draw [.EndPath MAKE ".draw "false

LOCALMAKE "ps PENDOWNP PU RT 90 FD 0.9*:.fs LT 90
(TYPE "|<g transform="translate(| FORM XCOR+:.x0 :.m :.d ",

FORM :.y0-YCOR :.m :.d "|)">|)
(TYPE "|<g transform="rotate(| heading-90 "|)|) PRINT "|">|
(TYPE "|<text x="0" y="0"|

"| style="font-family:| :.font "|;font-size:| :.fs
"|;font-weight:| :.fw "|;fill:| :.pc)

IF :.italic [TYPE "|;font-style:italic|]
PRINT "|;">|
PRINT :u
PRINT "|</text></g></g>|
SETPOS :.ls IF :ps [PD] MAKE ".draw "true
.BegPath

]]
]

6 Conclusion

Further implementation details onLogo2SVG can be seen from its code. The last version of
Logo2SVG and some examples of SVG files produced with it are available at:
http://vlado.fmf.uni-lj.si/educa/logo/logo2svg/

References

[1] Batagelj V.:Logo to Postscript. Proceedings of Eurologo97. Budapest, 1997, p. 333-341.
http://vlado.fmf.uni-lj.si/educa/logo/logo2ps/

[2] Harvey B.:Berkeley Logo: http://http.cs.berkeley.edu/˜bh/

[3] Mills G.: Logo (Berkeley) for Windows, ver. 6.4h. Program doc file in Word, July 2000.
http://www.softronix.com/logo.html

[4] The World Wide Web Consortium – W3C : http://www.w3.org

[5] XML : http://www.w3.org/XML/

[6] W3C/SVG : http://www.w3.org/TR/SVG/index.html

[7] ECMA/JavaScript : http://www.ecma.ch/ecma1/stand/ecma-290.htm

[8] Java: http://java.sun.com/

[9] Unicode: http://www.unicode.org/

[10] Adobe SVG Viewer: http://www.adobe.com/svg/viewer/install/

[11] Adobe Illustrator:
http://www.adobe.com/products/illustrator/main.html

[12] Corel Draw: http://www.corel.com/svg

[13] Jasc Software, WebDraw: http://www.jasc.com/webdraw

[14] Mayura: http://www.mayura.com/

[15] Vienna - Social patterns and structures:
http://www.karto.ethz.ch/ an/cartography/vienna/

[16] Europe: http://www.carto.net/papers/svg/eu/index.html

