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Approaches to large networks
In analysis of a large network (several thousands or millions of vertices,
the network can be stored in computer memory) we can’t display it in its
totality; also there are only few algorithms available.

To analyze a large network we can use statistical approach or we can
identify smaller (sub) networks that can be analyzed further using more
sophisticated methods.
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Degrees

degree of vertex v, deg(v) = number
of lines with v as end-vertex;
indegree of vertex v, indeg(v) =
number of lines with v as terminal
vertex (end-vertex is both initial and
terminal);
outdegree of vertex v, outdeg(v) =
number of lines with v as initial vertex.

n = 12, m = 23, indeg(e) = 3, outdeg(e) = 5, deg(e) = 6∑
v∈V

indeg(v) =
∑
v∈V

outdeg(v) = |A|+ 2|E|,
∑
v∈V

deg(v) = 2|L| − |E0|
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Pajek and R

Pajek 0.89 (and later) supports the use of external programs (menu
Tools). It provides a special support for statistical program R.
In Pajek we determine the degrees of vertices and submit them to R
info/network/general
Net/Partitions/Degree/All
Partition/Make Vector
Tools/Program R/Send to R/Current Vector

In R we determine their distribution and plot it
summary(v2)
t <- tabulate(v2)
c <- t[t>0]
i <- (1:length(t))[t>0]
plot(i,c,log=’xy’,main=’degree distribution’,

xlab=’deg’,ylab=’freq’)

Attention! The vertices of degree 0 are not considered by tabulate.
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Erdős and Renyi’s random graphs
Erdős and Renyi defined a random graph
as follows: every possible line is included
in a graph with a given probabilty p.
In Pajek’s
Net/Random Network/Erdos-Renyi

instead of probability p a more intuitive
average degree is used

deg =
1
n

∑
v∈V

deg(v)

It holds p = m
mmax

and, for simple graphs, also deg = 2m
n .

Random graph in picture has 100 vertices and average degree 3.
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Degree distribution
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Real-life networks are usually not random in the Erdős/Renyi sense. The
analysis of their distributions gave a new view about their structure – Watts
(Small worlds), Barabási (nd/networks, Linked).
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Homomorphisms of graphs
Functions (ϕ,ψ), ϕ:V → V ′ and ψ:L → L′ determine a weak homomor-
phism of graph G = (V,L) in graph H = (V ′,L′) iff:

∀u, v ∈ V ∀p ∈ L : (p(u : v) ⇒ ψ(p)(ϕ(u) : ϕ(v)))

and they determine a (strong) homomorphism of graph G in graph H iff:

∀u, v ∈ V ∀p ∈ L : (p(u, v) ⇒ ψ(p)(ϕ(u), ϕ(v)))

Ifϕ andψ are bijections and the condition hold in
both direction we get an isomorphism of graphs
G and H. We denote the weak isomorphism by
G ∼ H; and the (strong) isomorphism by G ≈
H. Itholds ≈⊂∼.
An invariant of graph is called each graph char-
acteristic that has the same value for all isomor-
phic graphs.

EulerGT
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Clusters, clusterings, partitions, hierarchies
A nonempty subset C ⊆ V is called a cluster (group). A nonempty set of
clusters C = {Ci} forms a clustering.

Clustering C = {Ci} is a partition iff

∪C =
⋃
i

Ci = V in i 6= j ⇒ Ci ∩ Cj = ∅

Clustering C = {Ci} is a hierarchy iff

Ci ∩ Cj ∈ {∅, Ci, Cj}

Hierarchy C = {Ci} is complete, iff ∪C = V; and is basic if for all
v ∈ ∪C also {v} ∈ C.
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Contraction of cluster

Contraction of cluster C is called a graph G/C, in which all vertices of the
cluster C are replaced by a single vertex, say c. More precisely:

G/C = (V ′,L′), where V ′ = (V \ C) ∪ {c} and L′ consists of lines
from L that have both end-vertices in V \ C. Beside these it contains also
a ’star’ with the center c and: arc (v, c), if ∃p ∈ L, u ∈ C : p(v, u);
or arc (c, v), if ∃p ∈ L, u ∈ C : p(u, v). There is a loop (c, c) in c if
∃p ∈ L, u, v ∈ C : p(u, v).

In a network over graph G we have also to specify how are determined the
values/weights in the shrunk part of the network. Usually as the sum or
maksimum/minimum of the original values.
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Contracted clusters – international trade
Pajek - shadow [0.00,1.00]
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Snyder and Kick’s international trade. Matrix display of dense networks.

w(Ci, Cj) =
n(Ci, Cj)

n(Ci) · n(Cj)
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Subgraph

A subgraph H = (V ′,L′) of a given graph G = (V,L) is a graph which set
of lines is a subset of set of lines of G, L′ ⊆ L, its vertex set is a subset of
set of vertices of G, V ′ ⊆ V , and it contains all end-vertices of L′.

A subgraph can be induced by a given subset of vertices or lines.
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Cut-out – induced subgraph: Snyder and Kick – Africa
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Cuts
The standard approach to find interesting groups inside a network was based
on properties/weights – they can be measured or computed from network
structure (for example Kleinberg’s hubs and authorities).

The vertex-cut of a network N = (V,L, p), p : V → IR, at selected level t
is a subnetwork N (t) = (V ′,L(V ′), p), determined by the set

V ′ = {v ∈ V : p(v) ≥ t}

and L(V ′) is the set of lines from L that have both endpoints in V ′.

The line-cut of a network N = (V,L, w), w : L → IR, at selected level t is
a subnetwork N (t) = (V(L′),L′, w), determined by the set

L′ = {e ∈ L : w(e) ≥ t}

and V(L′) is the set of all endpoints of the lines from L′.
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Simple analysis using cuts

We look at the components of N (t).

Their number and sizes depend on t. Usually there are many small
components. Often we consider only components of size at least k and
not exceeding K. The components of size smaller than k are discarded as
’noninteresting’; and the components of size larger than K are cut again at
some higher level.

The values of thresholds t, k and K are determined by inspecting the
distribution of vertex/arc-values and the distribution of component sizes
and considering additional knowledge on the nature of network or goals of
analysis.

We developed some new and efficiently computable properties/weights.
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Citation weights

PFAFFELHUBER-E-1975-V18-P217

POGGIO-T-1975-V19-P201

KOHONEN-T-1976-V21-P85

KOHONEN-T-1976-V22-P159

AMARI-SI-1977-V26-P175

KOHONEN-T-1977-V2-P1065

ANDERSON-JA-1977-V84-P413

WOOD-CC-1978-V85-P582

COOPER-LN-1979-V33-P9

PALM-G-1980-V36-P19

AMARI-S-1980-V42-P339SUTTON-RS-1981-V88-P135

KOHONEN-T-1982-V43-P59

BIENENSTOCK-EL-1982-V2-P32

HOPFIELD-JJ-1982-V79-P2554

ANDERSON-JA-1983-V13-P799

KNAPP-AG-1984-V10-P616

MCCLELLAND-JL-1985-V114-P159

HECHTNIELSEN-R-1987-V26-P1892

HECHTNIELSEN-R-1987-V26-P4979

GROSSBERG-S-1987-V11-P23

CARPENTER-GA-1987-V37-P54

GROSSBERG-S-1988-V1-P17

HECHTNIELSEN-R-1988-V1-P131SEJNOWSKI-TJ-1988-V241-P1299

BROWN-TH-1988-V242-P724

BROWN-TH-1990-V13-P475

KOHONEN-T-1990-V78-P1464

TREVES-A-1991-V2-P371

HASSELMO-ME-1993-V16-P218

BARKAI-E-1994-V72-P659

HASSELMO-ME-1994-V14-P3898

HASSELMO-ME-1994-V7-P13

HASSELMO-ME-1995-V67-P1

HASSELMO-ME-1995-V15-P5249

GLUCK-MA-1997-V48-P481

ASHBY-FG-1999-V6-P363

Pajek

The citation network analysis
started in 1964 with the paper of
Garfield et al. In 1989 Hummon
and Doreian proposed three
indices – weights of arcs that are
proportional to the number of
different source-sink paths passing
through the arc. We developed
algorithms to efficiently compute
these indices.
Main subnetwork (arc cut at level
0.007) of the SOM (selforganizing
maps) citation network (4470 ver-
tices, 12731 arcs).
See paper.
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Walks
length |s| of the walk s is the number
of lines it contains.
s = (j, h, l, g, e, f, h, l, e, c, b, a)
|s| = 11
A walk is closed iff its initial and ter-
minal vertex coincide.
If we don’t consider the direction of the
lines in the walk we get a semiwalk or
chain.
trail – walk with all lines different
path – walk with all vertices different
cycle – closed walk with all internal
vertices different

A graph is acyclic if it doesn’t contain any cycle.
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Shortest paths
A shortest path from u to v is also
called a geodesic from u to v. Its
length is denoted by d(u, v).
If there is no walk from u to v then
d(u, v) = ∞.
d(j, a) = |(j, h, d, c, b, a)| = 5
d(a, j) = ∞
d̂(u, v) = max(d(u, v), d(v, u))
is a distance:
d̂(v, v) = 0, d̂(u, v) = d̂(v, u),
d̂(u, v) ≤ d̂(u, t) + d̂(t, v).

The diameter of a graph equals to the distance between the most distant pair
of vertices: D = maxu,v∈V d(u, v).

NICTA Networks Workshop, June 2005 s s y s l s y ss * 6
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Shortest paths
black

backlack clackblank

rack wackbalk bank basklick lanklace clickclankblink

rick race wickwalk bilkbale bane bastlinklice lanelate clink chick

rice rate winkwale bilehale wanebine wastbaitline chinkcline chic

rite winewilewhale wait chine chit

write whinewhile whit

white

DICT28.
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Equivalence relations and Partitions
A relation R on V is an equivalence relation iff it is
reflexive ∀v ∈ V : vRv, symmetric ∀u, v ∈ V : uRv ⇒ vRu, and
transitive ∀u, v, z ∈ V : uRz ∧ zRv ⇒ uRv.

Each equivalence relation determines a partition into equivalence classes
[v] = {u : vRu}.

Each partition C determines an equivalence relation
uRv ⇔ ∃C ∈ C : u ∈ C ∧ v ∈ C.

k-neighbors of v is the set of vertices on ’distance’ k from v, Nk(v) =
{u ∈ v : d(v, u) = k}.

The set of all k-neighbors, k = 0, 1, ... of v is a partition of V .

k-neighborhood of v, N (k)(v) = {u ∈ v : d(v, u) ≤ k}.
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Motorola’s neighborhood
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The thickness of edges is a square root of its value.
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Important vertices in network
It seems that the most important distinction between different vertex indices
is based on the view/decision whether the network is considered directed or
undirected. This gives us two main types of indices:

• directed case: measures of importance; with two subgroups: measures
of influence, based on out-going arcs; and measures of support, based
on incoming arcs;

• undirected case: measures of centrality, based on all lines.

For undirected networks all three types of measures coincide.

If we change the direction of all arcs (replace the relation with its inverse
relation) the measure of influence becomes a measure of support, and vice
versa.
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. . . Important vertices in network

The real meaning of measure of importance depends on the relation
described by a network. For example the most ’important’ person for the
relation ’ doesn’t like to work with ’ is in fact the least popular person.

Removal of an important vertex from a network produces a substantial
change in structure/functioning of the network.
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Normalization

Let p : V → IR be an index in network N = (V,L). If we want to compare
indices p over different networks we have to make them comparable.
Usually we try to achieve this by normalization of p.

Let N ∈ N(V), where N(V) is a selected set of networks over the same set
of vertices V ,

pmax = max
N∈N(V)

max
v∈V

pN (v) and pmin = min
N∈N(V)

min
v∈V

pN (v)

then we define the normalized index as

p′(v) =
p(v)− pmin

pmax − pmin
∈ [0, 1]

NICTA Networks Workshop, June 2005 s s y s l s y ss * 6
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Degrees

The simplest index are the degrees of vertices. Since for simple networks
degmin = 0 and degmax = n − 1, the corresponding normalized indices
are

centrality deg′(v) =
deg(v)
n− 1

and similary

support indeg′(v) =
indeg(v)

n

influence outdeg′(v) =
outdeg(v)

n

Instead of degrees in original network we can consider also the degrees with
respect to the reachability relation (transitive closure).

NICTA Networks Workshop, June 2005 s s y s l s y ss * 6
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Closeness

Most indices are based on the distance d(u, v) between vertices in a network
N = (V,L). Two such indices are

radius r(v) = maxu∈V d(v, u)

total closeness S(v) =
∑

u∈V d(v, u)

These two indices are measures of influence – to get measures of support
we have to replace in definitions d(u, v) with d(v, u).

If the network is not strongly connected rmax and Smax equal∞. Sabidussi
(1966) introduced a related measure 1/S(v); or in its normalized form

closeness cl(v) =
n− 1∑

u∈V d(v, u)

D = maxu,v∈V d(v, u) is called the diameter of network.
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Betweeness

Important are also the vertices that can control the information flow in the
network. If we assume that this flow uses only the shortest paths (geodesics)
we get a measure of betweeness (Anthonisse 1971, Freeman 1977)

b(v) =
1

(n− 1)(n− 2)

∑
u,t∈V:gu,t>0
u 6=v,t6=v,u6=t

gu,t(v)
gu,t

where gu,t is the number of geodesics from u to t; and gu,t(v) is the number
of those among them that pass through vertex v.

If we know matrices [du,v] and [gu,v] we can determine also gu,v(t) by:

gu,v(t) =

 gu,t · gt,v du,t + dt,v = du,v

0 otherwise

For computation of geodesic matrix see Brandes.

NICTA Networks Workshop, June 2005 s s y s l s y ss * 6

http://www.inf.uni-konstanz.de/algo/publications/b-fabc-01.pdf


V. Batagelj: Structure of Networks I 26'

&

$

%

Hubs and authorities
To each vertex v of a network N = (V,L) we assign two values: quality of
its content (authority) xv and quality of its references (hub) yv .

A good authority is selected by good hubs; and good hub points to good
authorities (see Klienberg).

xv =
∑

u:(u,v)∈L

yu and yv =
∑

u:(v,u)∈L

xu

Let W be a matrix of network N and x and y authority and hub vectors.
Then we can write these two relations as x = WT y and y = Wx.

We start with y = [1, 1, . . . , 1] and then compute new vectors x and
y. After each step we normalize both vectors. We repeat this until they
stabilize.

We can show that this procedure converges. The limit vector x∗ is the
principal eigen vector of matrix WT W; and y∗ of matrix WWT .
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. . . Hubs and authorities

Similar procedures are used in search engines on the web to evaluate the
importance of web pages.

PageRank, PageRank / Google, HITS / AltaVista, SALSA, teorija.

Examples: Krebs, Krempl.
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Clustering
Let G = (V, E) be simple undirected graph. Clustering in vertex v is
usually measured as a quotient between the number of lines in subgraph
G1(v) = G(N1(v)) induced by the neighbors of vertex v and the number of
lines in the complete graph on these vertices:

C(v) =


2|L(G1(v))|

deg(v)(deg(v)− 1)
deg(v) > 1

0 otherwise

We can consider also the size of vertex neighborhood by the following
correction

C1(v) =
deg(v)

∆
C(v)

where ∆ is the maximum degree in graph G. This measure attains its largest
value in vertices that belong to an isolated clique of size ∆.
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Connectivity

Vertex u is reachable from vertex v iff
there exists a walk with initial vertex v
and terminal vertex u.
Vertex v is weakly connected with ver-
tex u iff there exists a semiwalk with v
and u as its end-vertices.
Vertex v is strongly connected with ver-
tex u iff they are mutually reachable.

Weak and strong connectivity are equivalence relations.

Equivalence classes induce weak/strong components.
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Weak components

Reordering the vertices of network
such that the vertices from the same
class of weak partition are put to-
gether we get a matrix representa-
tion consisting of diagonal blocks –
weak components.
Most problems can be solved sepa-
rately on each component and after-
ward these solutions combined into
final solution.
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Special graphs – bipartite, tree

A graph G = (V,L) is bipartite iff its set of vertices V can be partitioned
into two sets V1 and V2 such that every line from L has one end-vertex in
V1 and the other in V2.

A weakly connected graph G is a tree iff it doesn’t contain loops and
semicycles of length at least 3.
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Reduction (condensation)

If we shrink every strong component of a given graph into a vertex, delete
all loops and identify parallel arcs the obtained reduced graph is acyclic.
For every acyclic graph an ordering / level function i : V → IN exists s.t.
(u, v) ∈ A ⇒ i(u) < i(v).
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. . . internal structure of strong components

Let d be the largest common divisor of lengths of
closed walks in a strong component.
The component is said to be simple, iff d = 1;
otherwise it is periodical with a period d.
The set of vertices V of strongly connected di-
rected graph G = (V, R) can be partitioned into
d clusters V1, V2, . . . , Vd, s.t. for every arc
(u, v) ∈ R holds u ∈ Vi ⇒ v ∈ V(imod d)+1 .
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. . . internal structure of strong components

Bonhoure’s periodical graph. Pajek data
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Bow-tie structure of the Web graph

Kumar &: The Web as a graph

Let S be the largest strong component
in network N ; W the weak compo-
nent containing S; I the set of ver-
tices from which S can be reached; O
the set of vertices reachable from S;
T (tubes) set of vertices (not in S) on
paths from I toO;R = W\ (I ∪S ∪
O ∪ T ) (tendrils); and D = V \ W .
The partition

{I,S,O, T ,R,D}

is called the bow-tie partition of V .
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Biconnectivity

Vertices u and v are biconnected iff they are connected (in both directions)
by two independent (no common internal vertex) paths.

Biconnectivity determines a partition of the set of lines.

A vertex is an articulation vertex iff its deletion increases the number of
weak components in a graph.

A line is a bridge iff its deletion increases the number of weak components
in a graph.
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k-connectivity
Vertex connectivity κ of graph G is equal to the smallest number of vertices
that, if deleted, induce a disconnected graph or the trivial graph K1.

Line connectivity λ of graph G is equal to the smallest number of lines that,
if deleted, induce a disconnected graph or the trivial graph K1.

Whitney’s inequality: κ(G) ≤ λ(G) ≤ δ(G) .

Graph G is (vertex) k−connected, if κ(G) ≥ k and is line k−connected, if
λ(G) ≥ k.

Whitney / Menger theorem: Graph G is vertex/line k−connected iff every
pair of vertices can be connected with k vertex/line internally disjoint
(semi)walks.
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Triangular and short cycle connectivities
In an undirected graph we call a triangle a subgraph isomorphic to K3.

A sequence (T1, T2, . . . , Ts) of triangles of G (vertex) triangularly connects
vertices u, v ∈ V iff u ∈ T1 and v ∈ Ts or u ∈ Ts and v ∈ T1

and V(Ti−1) ∩ V(Ti) 6= ∅, i = 2, . . . s. It edge triangularly connects
vertices u, v ∈ V iff a stronger version of the second condition holds
E(Ti−1) ∩ E(Ti) 6= ∅, i = 2, . . . s.

Vertex triangular connectivity is an equivalence on V; and edge triangular
connectivity is an equivalence on E . See the paper.

NICTA Networks Workshop, June 2005 s s y s l s y ss * 6

http://arxiv.org/PS_cache/cs/pdf/0308/0308011.pdf


V. Batagelj: Structure of Networks I 39'

&

$

%

Triangular network

Let G be a simple undirected graph. A triangular net-
work NT (G) = (V, ET , w) determined by G is a sub-
graph GT = (V, ET ) of G which set of edges ET con-
sists of all triangular edges of E(G). For e ∈ ET the
weight w(e) equals to the number of different trian-
gles in G to which e belongs.

Triangular networks can be used to efficiently identify dense clique-like
parts of a graph. If an edge e belongs to a k-clique in G then w(e) ≥ k − 2.
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Edge-cut at level 16 of triangular network of Erdős
collaboration graph

AJTAI, MIKLOS

ALAVI, YOUSEF

ALON, NOGA

ARONOV, BORIS

BABAI, LASZLO

BOLLOBAS, BELA

CHARTRAND, GARY

CHEN, GUANTAO

CHUNG, FAN RONG K.

COLBOURN, CHARLES J.
FAUDREE, RALPH J.

FRANKL, PETER

FUREDI, ZOLTAN
GODDARD, WAYNE D.

GRAHAM, RONALD L.

GYARFAS, ANDRAS

HARARY, FRANK

HEDETNIEMI, STEPHEN T.

HENNING, MICHAEL A.

JACOBSON, MICHAEL S.

KLEITMAN, DANIEL J.

KOMLOS, JANOS

KUBICKI, GRZEGORZ

LASKAR, RENU C.

LEHEL, JENO

LINIAL, NATHAN

LOVASZ, LASZLO

MAGIDOR, MENACHEMMCKAY, BRENDAN D.

MULLIN, RONALD C.

NESETRIL, JAROSLAV

OELLERMANN, ORTRUD R.

PACH, JANOS

PHELPS, KEVIN T.

POLLACK, RICHARD M.

RODL, VOJTECH
ROSA, ALEXANDER

SAKS, MICHAEL E.

SCHELP, RICHARD H.

SCHWENK, ALLEN JOHN

SHELAH, SAHARON

SPENCER, JOEL H.

STINSON, DOUGLAS ROBERT

SZEMEREDI, ENDRE

TUZA, ZSOLT

WORMALD, NICHOLAS C.

without Erdős,
n = 6926,
m = 11343
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Triangular connectivity in directed graphs
If the graph G is mixed we replace edges with pairs of opposite arcs. In the
following let G = (V,A) be a simple directed graph without loops. For a
selected arc (u, v) ∈ A there are four different types of directed triangles:
cyclic, transitive, input and output.

cyc tra in out

For each type we get the corresponding triangular network Ncyc, Ntra, Nin

and Nout.

The notion of triangular connectivity can be extended to the notion of short
(semi) cycle connectivity.
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Arc-cut at level 11 of transitive triangular network of
ODLIS dictionary
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book
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Pajek
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Islands
If we represent a given or computed value of vertices / lines as a height of
vertices / lines and we immerse the network into a water up to selected level
we get islands. Varying the level we get different islands. Islands are very
general and efficient approach to determine the ’important’ subnetworks in
a given network.

We developed very efficient algorithms to determine the islands hierarchy
and to list all the islands of selected sizes.

See details.
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. . . Islands

A set of verticesC ⊆ V is a regular vertex island in networkN = (V,L, p),
p : V → IR iff it induces a connected subgraph and the vertices from the
island are ’higher’ than the neighboring vertices

max
u∈N(C)

p(u) < min
v∈c

p(v)

A set of vertices C ⊆ V is a regular line island in network N = (V,L, w),
w : L → IR iff it induces a connected subgraph and the lines inside the
island are ’stronger related’ among them than with the neighboring vertices
– in N there exists a spanning tree T over C such that

max
(u,v)∈L,u/∈C,v∈C

w(u, v) < min
(u,v)∈T

w(u, v)
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Some properties of vertex islands

• The sets of vertices of connected components of vertex-cut at selected
level t are regular vertex islands.

• The setHp(N ) of all regular vertex islands of networkN is a complete
hierarchy:

– two islands are disjoint or one of them is a subset of the other

– each vertex belongs to at least one island

• Vertex islands are invariant for the strictly increasing transformations
of the property p.

• Two linked vertices cannot belong to two disjoint regular vertex islands.
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Algorithm for determining regular vertex islands

• We sink the network into the water, then we lower the water level step
by step.

• Each time a new vertex v appears from the water, we check with which
of the already visible islands is connected.

• We join these islands and the vertex v obtaining a new (larger) island.
These islands are subislands of the new island.
Vertex v is a port of the new island (the vertex with the smallest value).

• This can be done in O(max(n log n,m)) time.
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Simple vertex islands

• The set of vertices C ⊆ V is a local vertex peak, if it is a regular vertex
island and all of its vertices have the same value.

• Vertex island with a single local vertex peak is called a simple vertex
island.

• The types of vertex islands:

– FLAT – all vertices have the same value

– SINGLE – island has a single local vertex peak

– MULTI – island has more than one local vertex peaks

• Only the islands of type FLAT or SINGLE are simple islands.
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Some properties of line islands

• The sets of vertices of connected components of line-cut at selected
level t are regular line islands.

• The set Hw(N ) of all nondegenerated regular line islands of network
N is hierarchy (not necessarily complete):

– two islands are disjoint or one of them is a subset of the other

• Line islands are invariant for the strictly increasing transformations of
the weight w.

• Two linked vertices may belong to two disjoint regular line islands.
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Algorithm for determining regular line islands

• We sink the network into the water, then we lower the water level step
by step.

• Each time a new line e appears from the water, we check with which
of the already visible islands is connected (there are exactly two such
islands).

• We join these two islands obtaining a new (larger) island.
These islands are subislands of the new island.
Line e is a port of the new island (not necessarily the line with the
smallest value).

• This can be done in O(m log n) time.
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Simple line islands

• The set of vertices C ⊆ V is a local line peak, if it is a regular line
island and there exists a spanning tree of the corresponding induced
network, in which all lines have the same value as the line with the
largest value.

• Line island with a single local line peak is called a simple line island.

• The types of line islands:

– FLAT – there exists a spanning tree, in which all lines have the same
value as the line with the largest value.

– SINGLE – island has a single local line peak.

– MULTI – island has more than one local line peaks.

• Only the islands of type FLAT or SINGLE are simple islands.
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Islands - Reuters terror news

110-story
act

action

afghanistan

africa

agent

aid

air

air_force

airline

airliner

airport

american

american_airlines

anthrax
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chemical

cheyenne

chief

city
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conference

congressionalcontain

country
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death
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district

east

edmund

edward

effort

embassy

emergency

exchange

fbi

financialfire

firefighter

flight

florida

force

group

headquarters
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herald

hijack

hijacker
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jet
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knife-wielding
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large

late

leader

louisiana

man

manual

market

mayor

mayor_giuliani

member

mighty

military

miss

morning

nebraska

necessary

new_york

news

newspaper

north

nuclear

officer
official

offutt

organization

pakistan

pakistani

passenger

pentagon

people

pfc

phone

pilot

plane

plant

plaugher

plea

police

postal

power

rental

rescue

responsibility

saudi

saudi-born

scare

service

skin

smoke

south

space

special

specialist

state

stock

strike

support

suspect
taliban

team

terror

terrorism

terrorist
the_worst

thousand

thursday

toll

tower

trace

train

tuesday

twin

uniform

united_airlines

united_states
war

washington

weapon

wednesday
week

worker

world

world_trade_ctr

wyoming

Pajek

Using CRA S. Corman
and K. Dooley produced
the Reuters terror news
network that is based on
all stories released dur-
ing 66 consecutive days by
the news agency Reuters
concerning the September
11 attack on the US. The
vertices of a network are
words (terms); there is an
edge between two words
iff they appear in the same
text unit. The weight of an
edge is its frequency. It has
n = 13332 vertices and
m = 243447 edges.
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Islands – US patents

As an example, let us look at Nber network of US Patents. It has 3774768
vertices and 16522438 arcs (1 loop). We computed SPC weights in it and
determined all (2,90)-islands. The reduced network has 470137 vertices,
307472 arcs and for different k: C2 =187610, C5 =8859,C30 =101,
C50 =30 islands. Rolex
[1] 0 139793 29670 9288 3966 1827 997 578 362 250

[11] 190 125 104 71 47 37 36 33 21 23
[21] 17 16 8 7 13 10 10 5 5 5
[31] 12 3 7 3 3 3 2 6 6 2
[41] 1 3 4 1 5 2 1 1 1 1
[51] 2 3 3 2 0 0 0 0 0 1
[61] 0 0 0 0 1 0 0 2 0 0
[71] 0 0 1 1 0 0 0 1 0 0
[81] 2 0 0 0 0 1 2 0 0 7
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Island size distribution
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Main path and main island of Patents

2544659 3675987 3731986 3795436

3872140 3881806

3960752

4011173

4082428

4149413

4229315

4302352

4340498

4386007

4422951

4472293

4526704

4550981

4659502

4710315

4797228

4877547

5122295

5171469

5308538

5374374

5543077

5683624

5855814

268256233224853636168 3666948 36917553697150 3767289 3773747 37954363796479

3876286

3891307

39473753954653 3960752

3975286 400008440111734013582 40174164029595

4032470

4077260

408242840837974113647 41183354130502

4149413

4154697

4195916

41981304202791

4229315 4261652

42909054293434 4302352 4330426

43404984349452

43570784361494

4368135

4386007
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44002934415470
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4460770 4472293 44725924480117

4502974

4510069

45140444526704

455098145581514583826

46219014630896

4657695

4659502

4695131 47042274709030 4710315 47131974719032

472136747524144770503 4795579 4797228
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Liquid crystal display
Table 1: Patents on the liquid-crystal display

patent date author(s) and title
2544659 Mar 13, 1951 Dreyer. Dichroic light-polarizing sheet and the like and the

formation and use thereof
2682562 Jun 29, 1954 Wender, et al. Reduction of aromatic carbinols
3322485 May 30, 1967 Williams. Electro-optical elements utilazing an organic

nematic compound
3636168 Jan 18, 1972 Josephson. Preparation of polynuclear aromatic compounds
3666948 May 30, 1972 Mechlowitz, et al. Liquid crystal termal imaging system

having an undisturbed image on a disturbed background
3675987 Jul 11, 1972 Rafuse. Liquid crystal compositions and devices
3691755 Sep 19, 1972 Girard. Clock with digital display
3697150 Oct 10, 1972 Wysochi. Electro-optic systems in which an electrophoretic-

like or dipolar material is dispersed throughout a liquid
crystal to reduce the turn-off time

3731986 May 8, 1973 Fergason. Display devices utilizing liquid crystal light
modulation

3767289 Oct 23, 1973 Aviram, et al. Class of stable trans-stilbene compounds,
some displaying nematic mesophases at or near room
temperature and others in a range up to 100◦C

3773747 Nov 20, 1973 Steinstrasser. Substituted azoxy benzene compounds
3795436 Mar 5, 1974 Boller, et al. Nematogenic material which exhibit the Kerr

effect at isotropic temperatures
3796479 Mar 12, 1974 Helfrich, et al. Electro-optical light-modulation cell

utilizing a nematogenic material which exhibits the Kerr
effect at isotropic temperatures

3872140 Mar 18, 1975 Klanderman, et al. Liquid crystalline compositions and
method

3876286 Apr 8, 1975 Deutscher, et al. Use of nematic liquid crystalline substances
3881806 May 6, 1975 Suzuki. Electro-optical display device
3891307 Jun 24, 1975 Tsukamoto, et al. Phase control of the voltages applied to

opposite electrodes for a cholesteric to nematic phase
transition display

3947375 Mar 30, 1976 Gray, et al. Liquid crystal materials and devices
3954653 May 4, 1976 Yamazaki. Liquid crystal composition having high dielectric

anisotropy and display device incorporating same
3960752 Jun 1, 1976 Klanderman, et al. Liquid crystal compositions
3975286 Aug 17, 1976 Oh. Low voltage actuated field effect liquid crystals

compositions and method of synthesis
4000084 Dec 28, 1976 Hsieh, et al. Liquid crystal mixtures for electro-optical

display devices
4011173 Mar 8, 1977 Steinstrasser. Modified nematic mixtures with

positive dielectric anisotropy
4013582 Mar 22, 1977 Gavrilovic. Liquid crystal compounds and electro-optic

devices incorporating them
4017416 Apr 12, 1977 Inukai, et al. P-cyanophenyl 4-alkyl-4’-biphenylcarboxylate,

method for preparing same and liquid crystal compositions
using same

4029595 Jun 14, 1977 Ross, et al. Novel liquid crystal compounds and electro-optic
devices incorporating them

4032470 Jun 28, 1977 Bloom, et al. Electro-optic device
4077260 Mar 7, 1978 Gray, et al. Optically active cyano-biphenyl compounds and

liquid crystal materials containing them
4082428 Apr 4, 1978 Hsu. Liquid crystal composition and method

Table 2: Patents on the liquid-crystal display

patent date author(s) and title
4083797 Apr 11, 1978 Oh. Nematic liquid crystal compositions
4113647 Sep 12, 1978 Coates, et al. Liquid crystalline materials
4118335 Oct 3, 1978 Krause, et al. Liquid crystalline materials of reduced viscosity
4130502 Dec 19, 1978 Eidenschink, et al. Liquid crystalline cyclohexane derivatives
4149413 Apr 17, 1979 Gray, et al. Optically active liquid crystal mixtures and

liquid crystal devices containing them
4154697 May 15, 1979 Eidenschink, et al. Liquid crystalline hexahydroterphenyl

derivatives
4195916 Apr 1, 1980 Coates, et al. Liquid crystal compounds
4198130 Apr 15, 1980 Boller, et al. Liquid crystal mixtures
4202791 May 13, 1980 Sato, et al. Nematic liquid crystalline materials
4229315 Oct 21, 1980 Krause, et al. Liquid crystalline cyclohexane derivatives
4261652 Apr 14, 1981 Gray, et al. Liquid crystal compounds and materials and

devices containing them
4290905 Sep 22, 1981 Kanbe. Ester compound
4293434 Oct 6, 1981 Deutscher, et al. Liquid crystal compounds
4302352 Nov 24, 1981 Eidenschink, et al. Fluorophenylcyclohexanes, the preparation

thereof and their use as components of liquid crystal dielectrics
4330426 May 18, 1982 Eidenschink, et al. Cyclohexylbiphenyls, their preparation and

use in dielectrics and electrooptical display elements
4340498 Jul 20, 1982 Sugimori. Halogenated ester derivatives
4349452 Sep 14, 1982 Osman, et al. Cyclohexylcyclohexanoates
4357078 Nov 2, 1982 Carr, et al. Liquid crystal compounds containing an alicyclic

ring and exhibiting a low dielectric anisotropy and liquid
crystal materials and devices incorporating such compounds

4361494 Nov 30, 1982 Osman, et al. Anisotropic cyclohexyl cyclohexylmethyl ethers
4368135 Jan 11, 1983 Osman. Anisotropic compounds with negative or positive

DC-anisotropy and low optical anisotropy
4386007 May 31, 1983 Krause, et al. Liquid crystalline naphthalene derivatives
4387038 Jun 7, 1983 Fukui, et al. 4-(Trans-4’-alkylcyclohexyl) benzoic acid

4’”-cyano-4”-biphenylyl esters
4387039 Jun 7, 1983 Sugimori, et al. Trans-4-(trans-4’-alkylcyclohexyl)-cyclohexane

carboxylic acid 4’”-cyanobiphenyl ester
4400293 Aug 23, 1983 Romer, et al. Liquid crystalline cyclohexylphenyl derivatives
4415470 Nov 15, 1983 Eidenschink, et al. Liquid crystalline fluorine-containing

cyclohexylbiphenyls and dielectrics and electro-optical display
elements based thereon

4419263 Dec 6, 1983 Praefcke, et al. Liquid crystalline cyclohexylcarbonitrile
derivatives

4422951 Dec 27, 1983 Sugimori, et al. Liquid crystal benzene derivatives
4455443 Jun 19, 1984 Takatsu, et al. Nematic halogen Compound
4456712 Jun 26, 1984 Christie, et al. Bismaleimide triazine composition
4460770 Jul 17, 1984 Petrzilka, et al. Liquid crystal mixture
4472293 Sep 18, 1984 Sugimori, et al. High temperature liquid crystal substances of

four rings and liquid crystal compositions containing the same
4472592 Sep 18, 1984 Takatsu, et al. Nematic liquid crystalline compounds
4480117 Oct 30, 1984 Takatsu, et al. Nematic liquid crystalline compounds
4502974 Mar 5, 1985 Sugimori, et al. High temperature liquid-crystalline ester

compounds
4510069 Apr 9, 1985 Eidenschink, et al. Cyclohexane derivatives

Table 3: Patents on the liquid-crystal display

patent date author(s) and title
4514044 Apr 30, 1985 Gunjima, et al. 1-(Trans-4-alkylcyclohexyl)-2-(trans-4’-(p-sub

stituted phenyl) cyclohexyl)ethane and liquid crystal mixture
4526704 Jul 2, 1985 Petrzilka, et al. Multiring liquid crystal esters
4550981 Nov 5, 1985 Petrzilka, et al. Liquid crystalline esters and mixtures
4558151 Dec 10, 1985 Takatsu, et al. Nematic liquid crystalline compounds
4583826 Apr 22, 1986 Petrzilka, et al. Phenylethanes
4621901 Nov 11, 1986 Petrzilka, et al. Novel liquid crystal mixtures
4630896 Dec 23, 1986 Petrzilka, et al. Benzonitriles
4657695 Apr 14, 1987 Saito, et al. Substituted pyridazines
4659502 Apr 21, 1987 Fearon, et al. Ethane derivatives
4695131 Sep 22, 1987 Balkwill, et al. Disubstituted ethanes and their use in liquid

crystal materials and devices
4704227 Nov 3, 1987 Krause, et al. Liquid crystal compounds
4709030 Nov 24, 1987 Petrzilka, et al. Novel liquid crystal mixtures
4710315 Dec 1, 1987 Schad, et al. Anisotropic compounds and liquid crystal

mixtures therewith
4713197 Dec 15, 1987 Eidenschink, et al. Nitrogen-containing heterocyclic compounds
4719032 Jan 12, 1988 Wachtler, et al. Cyclohexane derivatives
4721367 Jan 26, 1988 Yoshinaga, et al. Liquid crystal device
4752414 Jun 21, 1988 Eidenschink, et al. Nitrogen-containing heterocyclic compounds
4770503 Sep 13, 1988 Buchecker, et al. Liquid crystalline compounds
4795579 Jan 3, 1989 Vauchier, et al. 2,2’-difluoro-4-alkoxy-4’-hydroxydiphenyls and

their derivatives, their production process and
their use in liquid crystal display devices

4797228 Jan 10, 1989 Goto, et al. Cyclohexane derivative and liquid crystal
composition containing same

4820839 Apr 11, 1989 Krause, et al. Nitrogen-containing heterocyclic esters
4832462 May 23, 1989 Clark, et al. Liquid crystal devices
4877547 Oct 31, 1989 Weber, et al. Liquid crystal display element
4957349 Sep 18, 1990 Clerc, et al. Active matrix screen for the color display of

television pictures, control system and process for producing
said screen

5016988 May 21, 1991 Iimura. Liquid crystal display device with a birefringent
compensator

5016989 May 21, 1991 Okada. Liquid crystal element with improved contrast and
brightness

5122295 Jun 16, 1992 Weber, et al. Matrix liquid crystal display
5124824 Jun 23, 1992 Kozaki, et al. Liquid crystal display device comprising a

retardation compensation layer having a maximum principal
refractive index in the thickness direction

5171469 Dec 15, 1992 Hittich, et al. Liquid-crystal matrix display
5283677 Feb 1, 1994 Sagawa, et al. Liquid crystal display with ground regions

between terminal groups
5308538 May 3, 1994 Weber, et al. Supertwist liquid-crystal display
5374374 Dec 20, 1994 Weber, et al. Supertwist liquid-crystal display
5543077 Aug 6, 1996 Rieger, et al. Nematic liquid-crystal composition
5555116 Sep 10, 1996 Ishikawa, et al. Liquid crystal display having adjacent

electrode terminals set equal in length
5683624 Nov 4, 1997 Sekiguchi, et al. Liquid crystal composition
5855814 Jan 5, 1999 Matsui, et al. Liquid crystal compositions and liquid crystal

display elements
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Islands – The Edinburgh Associative Thesaurus
n = 23219, m = 325624, transitivity weight
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Dense groups
Several notions were proposed in attempts to formally describe dense
groups in graphs.

Clique of order k is a maximal complete subgraph (isomorphic to Kk),
k ≥ 3.

s-plexes, LS sets, lambda sets, cores, . . .

For all of them, except for cores, it turned out that they are difficult to
detemine.
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Cores and generalized cores
The notion of core was introduced
by Seidman in 1983. Let G =
(V, E) be a graph. A subgraph H =
(W, E|W ) induced by the set W is
a k-core or a core of order k iff
∀v ∈ W : degH(v) ≥ k, and H is
a maximal subgraph with this prop-
erty. The core of maximum order is
also called the main core.

The core number of vertex v is the highest order of a core that contains
this vertex. The degree deg(v) can be: in-degree, out-degree, in-degree +
out-degree, etc., determining different types of cores.
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Properties of cores

From the figure, representing 0, 1, 2 and 3 core, we can see the following
properties of cores:

• The cores are nested: i < j =⇒ Hj ⊆ Hi

• Cores are not necessarily connected subgraphs.

An efficient algorithm for determining the cores hierarchy is based on the
following property:

If from a given graph G = (V, E) we recursively delete all vertices,
and edges incident with them, of degree less than k, the remaining
graph is the k-core.
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. . . Properties of cores

The cores, because they can be determined very efficiently, are one among
few concepts that provide us with meaningful decompositions of large
networks. We expect that different approaches to the analysis of large
networks can be built on this basis. For example: we get the following
bound on the chromatic number of a given graph G

χ(G) ≤ 1 + core(G)

Cores can also be used to localize the search for interesting subnetworks in
large networks since: if it exists, a k-component is contained in a k-core;
and a k-clique is contained in a k-core.

For details see the paper.
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6-core of Krebs Internet industries
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Generalized cores

The notion of core can be generalized to networks. Let N = (V, E , w)
be a network, where G = (V, E) is a graph and w : E → IR is a function
assigning values to edges. A vertex property function on N, or a p-
function for short, is a function p(v, U), v ∈ V , U ⊆ V with real values.
Let NU (v) = N(v) ∩ U . Besides degrees, here are some examples of
p-functions:

pS(v, U) =
∑

u∈NU (v)

w(v, u), where w : E → IR+
0

pM (v, U) = max
u∈NU (v)

w(v, u), where w : E → IR

pk(v, U) = number of cycles of length k through vertex v in (U, E|U)

The subgraph H = (C, E|C) induced by the set C ⊆ V is a p-core at level
t ∈ IR iff ∀v ∈ C : t ≤ p(v, C) and C is a maximal such set.
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Generalized cores algorithm
The function p is monotone iff it has the property

C1 ⊂ C2 ⇒ ∀v ∈ V : (p(v, C1) ≤ p(v, C2))

The degrees and the functions pS , pM and pk are monotone. For a monotone
function the p-core at level t can be determined, as in the ordinary case, by
successively deleting vertices with value of p lower than t; and the cores on
different levels are nested

t1 < t2 ⇒ Ht2 ⊆ Ht1

The p-function is local iff p(v, U) = p(v,NU (v)) .

The degrees, pS and pM are local; but pk is not local for k ≥ 4. For a local
p-function an O(mmax(∆, log n)) algorithm for determining the p-core
levels exists, assuming that p(v,NC(v)) can be computed in O(degC(v)).

For details see the paper.
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pS-core at level 46 of Geombib network
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