4 N

FONINGSBERGA

Structure of
Networks 1

"“" ? ‘“

r-_,.-,,_.q

Vladimir Batagelj

ﬁ
University of Ljubljana

Konigsberg bridges

Networks Workshop
NICTA, Sydney, June 2005

= /

version: June 16, 2005 / 20 : 28




V. Batagelj: Structure of Networks I

-~

Outline \

1 Approaches tolargenetworks . . . . . . . ... ... ... ... 1
2 Degrees . . . . ... e e e e 2
6 Homomorphismsof graphs . . . . . . ... ... ... ..... 6
7 Clusters, clusterings, partitions, hierarchies . . . . . . ... .. 7
10 Subgraph . . . . ... 10
12 Cuts . . . . o e e e e 12
15 Walks . . . . ... 15
18 Equivalence relations and Partitions . . . . . . ... ... ... 18
20 Important verticesinnetwork . . . . . . ... ... .00, 20
20 Connectivity . . . . . . v v i e e e e e e e e e e e e e e e e 29
37 k-connectivity . . . . . . . ... 37
\38 Triangular and short cycle connectivities . . . . . . .. ... .. 38j

NICTA Networks Workshop, June 2005




V. Batagelj: Structure of Networks I 2

4 N

43 Islands . . . . . . . . 43
57 Dense groups . . . . . . o i it e e e e e e e e e e e e e 57
58 Cores and generalizedcores . . . . .. ... ... ....... 58

N /

NICTA Networks Workshop, June 2005 4P O DV ¥ « %




V. Batagelj: Structure of Networks I 1

4 N

Approaches to large networks

In analysis of a /arge network (several thousands or millions of vertices,
the network can be stored in computer memory) we can’t display it in its
totality; also there are only few algorithms available.

To analyze a large network we can use statistical approach or we can
identify smaller (sub) networks that can be analyzed further using more
sophisticated methods.

N /
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/ Degrees \

degree of vertex v, deg(v) = number

of lines with v as end-vertex;

indegree of vertex v, indeg(v) =
number of lines with v as terminal
vertex (end-vertex is both initial and

terminal);

outdegree of vertex v, outdeg(v) =
number of lines with v as initial vertex.

n =12, m = 23, indeg(e) = 3, outdeg(e) = 5, deg(e) =6
Z indeg(v) = Zoutdeg(v) = |A| + 2|&], Z deg(v) = 2|L| — |&]

!)EV ’UEV ’UEV /
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Pajek and R

Pajek 0.89 (and later) supports the use of external programs (menu
Tools). It provides a special support for statistical program R.
In Pajek we determine the degrees of vertices and submit them to R

info/network/general

Net /Partitions/Degree/All

Partition/Make Vector

Tools/Program R/Send to R/Current Vector

In R we determine their distribution and plot it

summary (v2)

t <- tabulate (v2)

c <— t[t>0]

1 <= (l:length(t)) [t>0]

plot (i,c,log=’'xy’,main="degree distribution’,
xlab="deg’,ylab=’' freq’)

Attention! The vertices of degree 0 are not considered by tabulate.

N
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Erdos and Renyi’s random graphs

Erdds and Reny1 defined a random graph
as follows: every possible line 1s included
in a graph with a given probabilty p.

) In Pajek’s
‘«é’:"\ Net /Random Network/Erdos—Renyi
S / .
57
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average degree 1s used

— 1
deg=— d
g =— 3 deg(v)

It holds p = —™— and, for simple graphs, also deg = 27"”

mmaaz

Random graph in picture has 100 vertices and average degree 3.

o /
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Degree distribution

Random graph degree distribution, n=100000, degav=30 US Patents degree distribution
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Real-life networks are usually not random in the Erd0s/Reny1 sense. The
analysis of their distributions gave a new view about their structure — Watts
(Small worlds), Barabasi (nd/networks, Linked). /

NICTA Networks Workshop, June 2005 4P O D ¥ « R



http://smallworld.columbia.edu/
http://www.nd.edu/~networks/
http://www.amazon.com/exec/obidos/ASIN/0452284392/qid%3D1052459508/sr%3D2-1/ref%3Dsr%5F2%5F1/104-8353649-1953524

V. Batagelj: Structure of Networks I 6

/ Homomorphisms of graphs \

Functions (¢,1), ¢:V — V' and ¥: L — L' determine a weak homomor-
phism of graph G = (V, L) in graph H = (V’, L) iff:

Vu,v € VVp € L: (p(u:v) = 9(p)(p(u) : p(v)))

and they determine a (strong) homomorphism of graph G in graph H iff:

Vu,v € VVp € L: (p(u,v) = P(p)(p(u), ¢(v)))

If ¢ and %) are bijections and the condition hold in

Q. P both direction we get an isomorphism of graphs
"/ o(u) G and H. We denote the weak isomorphism by
(0.0 \b G ~ 'H; and the (strong) isomorphism by G ~
—> | ¥ H. Ttholds ~C~.
©w(v) An invariant of graph is called each graph char-

acteristic that has the same value for all isomor-
phic graphs.

\EulerGT /
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Clusters, clusterings, partitions, hierarchies

A nonempty subset C' C V is called a cluster (group). A nonempty set of
clusters C = {C;} forms a clustering.

Clustering C = {C; } is a partition iff

UCZUCi:V 1n z;éj:>CZﬂCJ:(Z)

Clustering C = {C;} is a hierarchy iff
C; N Cj < {@, Cs, CJ}

Hierarchy C = {C;} is complete, iff UC = V; and is basic if for all
v € UC also {v} € C.

= /
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Contraction of cluster

Contraction of cluster C'is called a graph G/C, in which all vertices of the
cluster C' are replaced by a single vertex, say c. More precisely:

G/C = (V', L"), where V' = (V \ C) U {c} and L' consists of lines
from L that have both end-vertices in )V \ C. Beside these it contains also
a ’star’ with the center ¢ and: arc (v,c), if 3p € L,u € C : p(v,u);
or arc (c,v), if dp € L,u € C : p(u,v). There is a loop (¢, ¢) in c if
dp e L,u,v e C:p(u,v).

In a network over graph G we have also to specify how are determined the
values/weights in the shrunk part of the network. Usually as the sum or

maksimum/minimum of the original values.

N /
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Contracted clusters — international trade \

S. America

Europe

Africa

<

\ =

Asia

Aust ~\Amerjca
Snyder and Kick’s international trade. Matrix display of dense networks.

n(Ci7 Cj)
n(C;) - n(Cy)

N /
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Subgraph \

Og Og

JAS e

A subgraph H = (V', L) of a given graph G = (V, L) is a graph which set
of lines is a subset of set of lines of G, £’ C L, its vertex set is a subset of
set of vertices of G, V' C V, and it contains all end-vertices of L’.

Q subgraph can be induced by a given subset of vertices or lines. /
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Cut-out — induced subgraph: Snyder and Kick — Africa
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/ Cuts \

The standard approach to find interesting groups inside a network was based

on properties/weights — they can be measured or computed from network
structure (for example Kleinberg’s hubs and authorities).

The vertex-cut of a network N' = (V, L,p), p : V — IR, at selected level ¢
is a subnetwork N (t) = (V', L(V’), p), determined by the set

Vi={veV:p) >t}

and L£(V') is the set of lines from £ that have both endpoints in V',

The line-cut of a network N' = (V, L, w), w : L — IR, at selected level ¢ is
a subnetwork NV (t) = (V(L'), L, w), determined by the set

L' ={ee L :w(e) >t}

kand V(L) is the set of all endpoints of the lines from L’. /
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Simple analysis using cuts

We look at the components of A/ (t).

Their number and sizes depend on ¢. Usually there are many small
components. Often we consider only components of size at least k£ and
not exceeding K. The components of size smaller than £ are discarded as
‘noninteresting’; and the components of size larger than K are cut again at
some higher level.

The values of thresholds ¢, £ and K are determined by inspecting the
distribution of vertex/arc-values and the distribution of component sizes
and considering additional knowledge on the nature of network or goals of

analysis.

We developed some new and efficiently computable properties/weights.

N /
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Citation weights

The citation network analysis
started in 1964 with the paper of
Garfield et al. In 1989 Hummon
and Doreian proposed three
indices — weights of arcs that are
proportional to the number of
different source-sink paths passing
through the arc. We developed
algorithms to efficiently compute
these indices.

Main subnetwork (arc cut at level
0.007) of the SOM (selforganizing
maps) citation network (4470 ver-
tices, 12731 arcs).

See paper.

NICTA Networks Workshop, June 2005
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terminal b
vertex =

N

initial
vertex

<0

Walks

walk

A graph is acyclic if it doesn’t contain any cycle.

length |s| of the walk s is the number
of lines it contains.

s=1(4,h,l,g,e, f,h,l,e,c b, a)

s| =11

A walk 1s closed iff 1ts 1nitial and ter-
minal vertex coincide.

If we don’t consider the direction of the
lines in the walk we get a semiwalk or
chain.

trail — walk with all lines different
path — walk with all vertices different
cycle — closed walk with all internal
vertices different

NICTA Networks Workshop, June 2005
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of vertices: D = max,, yey d(u,v).

N

Shortest paths

A shortest path from u to v 1s also
called a geodesic from wu to v. Its
length is denoted by d(u, v).

I there 1s no walk from w to v then
d(u,v) = oo.

d(j,a) = 1(j,h,d,c,b,a)| =5
d(a,j) = o

d(u,v) = max(d(u,v),d(v,u))
1s a distance:

d(v,v) =0, d(u,v) = d(v, u),
d(u,v) < d(u,t) + d(t,v).

The diameter of a graph equals to the distance between the most distant pair

/
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http://vlado.fmf.uni-lj.si/pub/networks/data/dic/dic28.zip
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Equivalence relations and Partitions

A relation R on V is an equivalence relation iff it is
reflexive Vv € V : v Rv, symmetric YVu,v € V : uRv = vRu, and
transitive Vu, v,z € V : uRz A zRv = uRwv.

Each equivalence relation determines a partition into equivalence classes

v] = {u : vRu}.

Each partition C determines an equivalence relation
uRv < dC e C:ueCAvell.

k-neighbors of v is the set of vertices on ’distance’ k from v, N*(v) =
{uev:dv,u) =k}

The set of all £-neighbors, £ = 0, 1, ... of v is a partition of V.
k-neighborhood of v, N*) (v) = {u € v : d(v, u) < k}.

= /

4 N
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Motorola’s neighborhood

The thickness of edges 1s a square root of its value.

N
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Important vertices in network

It seems that the most important distinction between different vertex indices
1s based on the view/decision whether the network is considered directed or
undirected. This gives us two main types of indices:

e directed case: measures of importance; with two subgroups: measures
of influence, based on out-going arcs; and measures of support, based
on incoming arcs;

e undirected case: measures of centrality, based on all lines.

For undirected networks all three types of measures coincide.

It we change the direction of all arcs (replace the relation with its inverse
relation) the measure of influence becomes a measure of support, and vice

versa.

N /
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... Important vertices in network

The real meaning of measure of importance depends on the relation
described by a network. For example the most 'important’ person for the
relation ’__ doesn’t like to work with __’ is in fact the least popular person.

Removal of an important vertex from a network produces a substantial
change 1n structure/functioning of the network.

NICTA Networks Workshop, June 2005
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Normalization

Let p : V — IR be an index in network A/ = (V, £). If we want to compare
indices p over different networks we have to make them comparable.
Usually we try to achieve this by normalization of p.

Let N € N(V), where N (V) is a selected set of networks over the same set
of vertices V,

— maxX max v and . = min min v
Pmax NEN(Y) veV pN( ) Pmin NEN(Y) vV p./\f( )

then we define the normalized index as

pl(o) = L ZPmin ¢ gy

Pmax — Pmin

N

NICTA Networks Workshop, June 2005
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Degrees

The simplest index are the degrees of vertices. Since for simple networks
deg, .., = 0 and deg,,,. = n — 1, the corresponding normalized indices

are
d
centrality deg’(v) = 8(v)
n—1
and similary
ind
support indeg’ (v) = indeg(v)
n
td
influence outdeg’(v) = outdeg(v)
n

Instead of degrees in original network we can consider also the degrees with
respect to the reachability relation (transitive closure).

N /
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Closeness

Most indices are based on the distance d(u, v) between vertices in a network
N = (V, L). Two such indices are

radius r(v) = maxy,cy d(v, u)
total closeness S() = ey dv,u)

These two indices are measures of influence — to get measures of support
we have to replace in definitions d(u, v) with d(v, u).

If the network is not strongly connected r,,,,., and S, .. equal co. Sabidussi
(1966) introduced a related measure 1/5(v); or in its normalized form

n—1
D ey (v, u)

D = max,, yey d(v, u) is called the diameter of network.

N /
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/ Betweeness \

Important are also the vertices that can control the information flow in the

network. If we assume that this flow uses only the shortest paths (geodesics)
we get a measure of betweeness (Anthonisse 1971, Freeman 1977)

1 9u t('U)
b(v) = ’
(n—1)(n—2) we% >0 Jut
u;év,t;év:u;ét

where g, ; is the number of geodesics from u to ¢; and g,, +(v) is the number
of those among them that pass through vertex v.

If we know matrices |d,, , | and |g,, ,] we can determine also g,, ., (?) by:

Gu.,t " Jt,v du,t + dt,v — du,v
Gu,v(t) = :
0 otherwise
kFor computation of geodesic matrix see Brandes. /
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/ Hubs and authorities \

To each vertex v of a network N' = (V, L) we assign two values: quality of

its content (authority) x, and quality of its references (fub) y,,.

A good authority 1s selected by good hubs; and good hub points to good
authorities (see Klienberg).

fe Y s awd p= Y
u:(u,v)EL w:(v,u)EL

Let W be a matrix of network A and x and y authority and hub vectors.
Then we can write these two relations as x = Wy and y = Wx.

We start with y = [1,1,...,1] and then compute new vectors x and
y. After each step we normalize both vectors. We repeat this until they
stabilize.

We can show that this procedure converges. The limit vector x* is the
kprincipal eigen vector of matrix W2 W ; and y* of matrix WW?. /
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... Hubs and authorities

Similar procedures are used in search engines on the web to evaluate the

importance of web pages.
PageRank, PageRank / Google, HITS / AltaVista, SALSA, teorija.

Examples: Krebs, Krempl.

=
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http://www.cs.cornell.edu/home/kleinber/auth.pdf
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/ Clustering \

Let G = (V, &) be simple undirected graph. Clustering in vertex v is

usually measured as a quotient between the number of lines in subgraph
Gl(v) = G(N!(v)) induced by the neighbors of vertex v and the number of
lines in the complete graph on these vertices:

( 2|L£(G ()

C(v) = 4 deg(v)(deg(v) — 1) deg(v) > 1

0 otherwise

\

We can consider also the size of vertex neighborhood by the following
correction

_ deg(v)
A

Cl (U) C(U)

where A is the maximum degree in graph . This measure attains its largest
kvalue in vertices that belong to an isolated clique of size A. /
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Connectivity

strong

b i )
_—_ component Vertex u 1s reachable from vertex v iff
\ there exists a walk with initial vertex v
O g and terminal vertex wu.
Vertex v 1s weakly connected with ver-
tex u 1ff there exists a semiwalk with v

and u as 1its end-vertices.

Vertex v is strongly connected with ver-

Oi tex u 1ff they are mutually reachable.

j \weak /

component

Weak and strong connectivity are equivalence relations.

Equivalence classes induce weak/strong components.

N /
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Weak components

Reordering the vertices of network
such that the vertices from the same
class of weak partition are put to-
gether we get a matrix representa-
tion consisting of diagonal blocks —
weak components.

Most problems can be solved sepa-
rately on each component and after-
ward these solutions combined into
final solution.

/
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Special graphs — bipartite, tree

A graph G = (V, L) is bipartite iff its set of vertices ) can be partitioned
into two sets V; and Vs such that every line from £ has one end-vertex in
)); and the other in Vs.

A weakly connected graph G is a tree iff it doesn’t contain loops and
semicycles of length at least 3.

N /
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/ Reduction (condensation) \
kO
1l
abed

ehjl oi

If we shrink every strong component of a given graph into a vertex, delete
all loops and identify parallel arcs the obtained reduced graph is acyclic.

For every acyclic graph an ordering / level function ¢ : VV — IN exists s.t.

(u,v) € A=i(u) <i(v).
N /
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/ ... Internal structure of strong components \

Let d be the largest common divisor of lengths of
closed walks in a strong component.

The component is said to be simple, iff d = 1;
otherwise it is periodical with a period d.

The set of vertices V of strongly connected di-
rected graph G = (V, R) can be partitioned into
d clusters Vi, Vo, ..., Vg4, s.t. for every arc
(w,v) € Rholds u € V; = v € Viimod d)+1 -

/
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... internal structure of strong components

Bonhoure’s periodical graph. Pajek data

~

NICTA Networks Workshop, June 2005
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.- Tendrils-..
" 44 Milion nodes ‘

IN
- ——

44 Million nodes

Disconnected components

Kumar &: The Web as a graph

=

L

Bow-tie structure of the Web graph

Let S be the largest strong component
in network A; W the weak compo-
nent containing S; Z the set of ver-
tices from which & can be reached; O
the set of vertices reachable from S;
7 (tubes) set of vertices (not in &) on
paths fromZ to O; R = W\ (ZUSU
O U T) (tendrils); and D = V \ W.
The partition

{Z,5,0,7,R,D}

is called the bow-tie partition of V.

NICTA Networks Workshop, June 2005
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http://www.almaden.ibm.com/cs/k53/algopapers/pods00graph.ps
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Biconnectivity

Vertices u and v are biconnected 1ff they are connected (in both directions)
by two independent (no common internal vertex) paths.

Biconnectivity determines a partition of the set of lines.

A vertex 1s an articulation vertex iff its deletion increases the number of
weak components in a graph.

A line is a bridge iff its deletion increases the number of weak components
in a graph.

N /
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k-connectivity

Whitney’s inequality: x(G) < A(G) < (G) .

AG) > k.

(semi)walks.

N

Vertex connectivity k of graph G is equal to the smallest number of vertices
that, if deleted, induce a disconnected graph or the trivial graph K.

Line connectivity A of graph G is equal to the smallest number of lines that,
if deleted, induce a disconnected graph or the trivial graph K.

Graph G is (vertex) k—connected, if xK(G) > k and is line k—connected, if

Whitney / Menger theorem: Graph G is vertex/line k—connected iff every
pair of vertices can be connected with k£ vertex/line internally disjoint

~

/
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Triangular and short cycle connectivities

In an undirected graph we call a friangle a subgraph isomorphic to K.

A sequence (11,15, ..., Ty) of triangles of G (vertex) triangularly connects
vertices u,v € Viff u € Ty andv € T, oru € T, and v € T}

and V(T;_1) N V(T;) # 0,1 = 2,...s. It edge triangularly connects
vertices u,v € V iff a stronger version of the second condition holds
E(T,_1)NET;) #£0,i=2,...s.

Iy By

Vertex triangular connectivity 1s an equivalence on V; and edge triangular

/

NICTA Networks Workshop, June 2005 4 > K . N * - x

connectivity is an equivalence on £. See the paper.
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Triangular network

A Let G be a simple undirected graph. A triangular net-
O work N (G) = (V, Er, w) determined by G is a sub-
graph G = (V, Er) of G which set of edges Er con-
o sists of all triangular edges of £(G). For e € & the
weight w(e) equals to the number of different trian-

. gles in G to which e belongs.

Triangular networks can be used to efficiently identify dense clique-like
parts of a graph. If an edge e belongs to a k-clique in G then w(e) > k —

N

2

/

39
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=

Edge-cut at level 16 of triangular network of Erdos
collaboration graph
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without Erdos,
n = 6926,
m = 11343
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/ Triangular connectivity in directed graphs \

If the graph G is mixed we replace edges with pairs of opposite arcs. In the
following let G = (V,.A) be a simple directed graph without loops. For a

selected arc (u,v) € A there are four different types of directed triangles:

cyclic, transitive, input and output.

Z Z Z Z
g A / \o c/\»o / \
u A% u A% u A% u A%

cyc tra n out

For each type we get the corresponding triangular network N, Nirq, N;
aIld Nout o

The notion of triangular connectivity can be extended to the notion of short

\(Semi ) cycle connectivity. /
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Arc-cut at level 11 of transitive triangular network of
ODLIS dictionary
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publication

American Library Directory
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iadical
uggestion[box

review

f frequency

issue

series

Library Literature colophon

fiction
bibliographic record & /Oabstract
editor
title
invoice table of contents /TOC e
parts of a booR endpaper copyright
O .. front matter collation
publisher
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cover
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/ Islands \

If we represent a given or computed value of vertices / lines as a height of

vertices / lines and we immerse the network into a water up to selected level
we get islands. Varying the level we get different islands. Islands are very
general and efficient approach to determine the important” subnetworks in
a given network.

We developed very efficient algorithms to determine the islands hierarchy
and to list all the islands of selected sizes.

\See details. /
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4 N

... Islands

A set of vertices C' C V is a regular vertex island in network N = (V, L, p),
p : V — IR iff it induces a connected subgraph and the vertices from the
i1sland are “higher’ than the neighboring vertices

u) < minp(v
ug]lv%)p( ) < minp(v)

A set of vertices C' C V is a regular line island in network N = (V, L, w),
w : L — R iff it induces a connected subgraph and the lines inside the
island are ’stronger related’ among them than with the neighboring vertices
— in V there exists a spanning tree 7 over C such that

max w(u,v) < min_ w(u,v)
(U,U)E,C,’U,%C,’UEC (’LL,’U)ET

N /
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/

N

~

Some properties of vertex islands

The sets of vertices of connected components of vertex-cut at selected
level ¢ are regular vertex islands.

The set H,,(N) of all regular vertex islands of network A\ is a complete
hierarchy:

— two 1slands are disjoint or one of them 1s a subset of the other

— each vertex belongs to at least one 1sland

Vertex 1slands are invariant for the strictly increasing transformations
of the property p.

Two linked vertices cannot belong to two disjoint regular vertex islands.

/
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/

N

~

Algorithm for determining regular vertex islands

We sink the network into the water, then we lower the water level step
by step.

Each time a new vertex v appears from the water, we check with which
of the already visible islands is connected.

We join these islands and the vertex v obtaining a new (larger) island.
These islands are subislands of the new island.
Vertex v is a port of the new island (the vertex with the smallest value).

This can be done in O(max(nlogn,m)) time.

/
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/

N

~

Simple vertex islands

The set of vertices C C V is a local vertex peak, if it is a regular vertex
1sland and all of its vertices have the same value.

Vertex 1sland with a single local vertex peak 1s called a simple vertex
island.
The types of vertex islands:

— FLAT — all vertices have the same value

— SINGLE —island has a single local vertex peak

— MULTI — island has more than one local vertex peaks

Only the 1slands of type FLAT or SINGLE are simple islands.
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4 N

Some properties of line islands

e The sets of vertices of connected components of line-cut at selected
level ¢ are regular line islands.

e The set H,,(N) of all nondegenerated regular line islands of network
N is hierarchy (not necessarily complete):

— two islands are disjoint or one of them is a subset of the other

e Line islands are invariant for the strictly increasing transformations of

the weight w.

e Two linked vertices may belong to two disjoint regular line 1slands.

N /
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/

N

~

Algorithm for determining regular line islands

We sink the network into the water, then we lower the water level step
by step.

Each time a new line e appears from the water, we check with which
of the already visible islands is connected (there are exactly two such
1slands).

We join these two islands obtaining a new (larger) island.

These islands are subislands of the new island.

Line e 1s a port of the new island (not necessarily the line with the
smallest value).

This can be done in O(m logn) time.

/
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/

N

~

Simple line islands

The set of vertices C C V is a local line peak, if it is a regular line
1sland and there exists a spanning tree of the corresponding induced
network, in which all lines have the same value as the line with the
largest value.

Line i1sland with a single local line peak 1s called a simple line island.

The types of line islands:

— FLAT — there exists a spanning tree, in which all lines have the same
value as the line with the largest value.

— SINGLE —island has a single local line peak.

— MULTI — island has more than one local line peaks.

Only the 1slands of type FLAT or SINGLE are simple 1slands.

/
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Using CRA S. Corman
and K. Dooley produced
the Reuters terror news
network that is based on
all stories released dur-
ing 66 consecutive days by
the news agency Reuters
concerning the September
11 attack on the US. The
vertices of a network are
words (terms); there is an
edge between two words
iff they appear in the same
text unit. The weight of an
edge is its frequency. It has
n = 13332 vertices and
m = 243447 edges.

NICTA Networks Workshop, June 2005

~

/

51

4P HOP ## & X


http://locks.asu.edu/terror/

V. Batagelj: Structure of Networks I

//”

(5o =30 islands. Rolex

N

Islands — US patents

[1] 0 139793 29670 9288 3966 1827 997 578 362 250
[11] 190 125 104 71 47 37 36 33 21 23
[21] 17 16 8 7 13 10 10 5 5 5
[31] 12 3 ' 3 3 3 2 6 6 2
[41] 1 3 4 1 5 2 1 1 1 1
[51] 2 3 3 2 0 0 0 0 0 1
[61] 0 0 0 0 1 0 0 2 0 0
[71] 0 0 1 1 0 0 0 1 0 0
[81] 2 0 0 0 0 1 2 0 0 7

As an example, let us look at Nber network of US Patents. It has 3774768
vertices and 16522438 arcs (1 loop). We computed SPC weights in i1t and
determined all (2,90)-1slands. The reduced network has 470137 vertices,

307472 arcs and for different k: C5 =187610, C5 =8859,C37 =101,

~

NICTA Networks Workshop, June 2005

52



http://www.nber.org/patents/
http://patft.uspto.gov/netahtml/srchnum.htm
http://vlado.fmf.uni-lj.si/pub/networks/doc/dagstuhl/rolex.pdf

V. Batagelj: Structure of Networks I

/ Island size distribution

K size
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Main path and main island of Patents
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Liquid crystal display

Table 1: Patents on the liquid-crystal display

Table 2: Patents on the liquid-crystal display

Table 3: Patents on the liquid-crystal display

patent date [ author(s) and title patent date [ author(s) and title patent date [ author(s) and title
2544659 | Mar 13, 1951 | Dreyer. Dichroic light-polarizing sheet and the like and the 1083797 | Apr 11, 1978 | Oh. Nematic liquid crystal compositions I514044 | Apr 30, 1985 | Gunjima, et al. I-(Trans-4-alkylcyclohexyl)-2-(trans-4~(p-sub
formation and use thereof 4113647 | Sep 12, 1978 | Coates, et al. Liquid crystalline materials stituted phenyl) cyclohexyl)ethane and liquid crystal mixture
2682562 | Jun 29, 1954 | Wender, et al. Reduction of aromatic carbinols 4118335 Oct 3, 1978 | Krause, et al. Liquid crystalline materials of reduced viscosity 4526704 Jul 2, 1985 | Petrzilka, et al. I\lultumg liquid crystal esters
3322485 | May 30, 1967 | Williams. Electro-optical elements utilazing an organic 4130502 | Dec 19, 1978 | Eidenschink, et al. Liquid crystalline cyclohexane derivatives 4550981 | Nov 5, 1985 | Petrzilka, et al. Liquid crystalline esters and mixtures
nematic compound 4149413 | Apr 17, 1979 | Gray, et al. Optically active liquid crystal mixtures and 4558151 | Dec 10, 1985 | Takatsu, et al. Nematic liquid crystalline compounds
3636168 | Jan 18, 1972 | Josephson. Preparation of polynuclear aromatic compounds liquid crystal devices containing them 4583826 | Apr 22, 1986 | Petrzilka, et al. Phenylethanes
3666948 | May 30, 1972 vitz, et al. Liquid crystal termal imaging 4154697 | May 15, 1979 | Eider (‘hmk et al. Liquid crystalline hexahydroterphenyl 4621901 | Nov 11, 1986 i t al. Novel liquid crystal mixtures
ge on a disturbed bac 4630896 | Dec 23, 1986 Benzonitriles
3675987 | Jul 11, 1972 se. Liquid crystal compositions and devices 4195916 | Apr 1, 1980 al compounds 4657695 | Apr 14, 1987 | Saito, et al. Substituted pyridazines
3691755 | Sep 19, 1972 rd, Clock with digital display 4198130 | Apr 15, 1980 | Boller, et al. Liquid crystal mixtures 4659502 | Apr 21, 1987 | Fearon, et al. Ethane derivat
3697150 | Oct 10, 1972 sms in which an electrophoretic- 4202791 | May 13, 1980 | Sato, et al. Nematic liquid crystalline materials 4695131 | Sep 22, 1987 | Balkwill, et al. Disubstituted ethanes and their use in liquid
rsed throughout a liquid 4229315 | Oct 21, 1980 | Krause, et al. Liquid crystalline cyclohexane derivatives al materials and devices
crystal to reduce the turn-off time 4261652 | Apr 14, 1981 | Gr al. Liquid crystal compounds and materials and 4704227 | Nov 3, 1987 | Krause, et al. Liquid crystal compounds
3731986 | May 8, 1973 | Fergason. Display devices utilizing liquid crystal light ontaining them 4709030 24, 1987 | Petrzilka, et al. Novel liquid crystal mixtures
modulation 4290900 Sep 22, 1981 | Kanbe. Ester compound 4710315 , 1987 | Schad, et al. Anisotropic compounds and liquid crystal
3767289 | Oct 23, 1973 | Aviram, et al. Class of stable trans-stilbene compounds, 42 ot 6, 1981 | Deutscher, et al. Liquid crystal compounds mixtures therewith
some displaying nematic mesophases at or near room 4302 1981 | Eidenschink, et al. Fluorophenyleyclohexanes, the preparation 4713197 | Dec 15, 1987 | Eidenschink, et al. Nitrogen-containing heterocyclic compounds
temperature and others in a range up to 100°C thereof and their use as (umpununts of liquid crystal dielectrics 4719032 | Jan 12, 1988 ohexane derivatives
3773747 | Nov 20, 1973 | Steinstrasser. Substituted azoxy benzene compounds 4330426 | May 18, 1982 | Eidenschink, et al. Cyclohexylbiphenyls, their preparation and 4721367 | Jan 26, 1988 ga, et al. Liquid crystal
3795436 | Mar 5, 1974 | Boller, et al. Nematogenic material which exhibit the Kerr T o Gt i e((loup(\cal display elements 4752414 | Jun 21, 1988 Fn]nnbchink et al. N ing heterocyclic compounds
effect at isotropic temperatures 4340498 | Jul 20, 1982 | Sugimori. Halogenated ester derivative 47705 Sep 13, 1988 X lline compounds
3796479 | Mar 12, 1974 | Helfrich, et al. Electro-optical light-modulation cell 4349452 | Sep 14, 1982 | Osman, et al. Cyclohexy ‘lohexanoates 4795579 Jan 3, 1989 \/m(hm et al. 2.2-difluore alkoxy-4'-hydroxydiphenyls and
utilizing a nematogenic material which exhibits the Kerr 4357078 | Nov 2, 1982 | Carr, et al. Liquid crystal compounds containing an alicyclic their derivatives, their production process and
effect at isotropic temperatures ring and oxh]bmng alow dielectric anisotropy and liquid their use in liquid crystal display devices
3872140 | Mar 18, 1975 | Klanderman, et al. Liquid crystalline compositions and crystal materials and devices incorporating such compounds 4797228 | Jan 10, 1989 | Goto, et al. Cyclohexane derivative and liquid crystal
method 4361494 | Nov 30, 1982 | Osman, et al. Anisotropic cyclohexyl cyclohexylmethy cthers (omposltlou containing same
3876286 Deutscher, et al. Use of nematic liquid crystalline substances 4368135 | Jan 11, 1983 | Osman. Anisotropic compounds w i 4820839 | Apr 11, 1989 | Krause, et al. Nitrogen-containing heterocyclic esters
3881806 Suzuki. Electro-optical display device DC-anisotropy and low optical anisotropy 4832462 | May 23, 1989 | Clark, et 41. Liquid crystal devices
3891307 Tsukamoto, et al. Phase control of the voltages applied to 4386007 | May 31, 1983 | Krause, et al. Liquid crystalline naphthalene derivatives 4877547 | Oct 31, 1989 | Weber, et al. Liquid crystal display clement
opposite electrodes for a cholesteric to nematic phase 4387038 | Jun 7, 1983 (Trans-4"-alkyleyclohexyl) benzoic acid 4957349 | Sep 18, 1990 | Clerc, et al. Active matrix screen for the color display of
transition display iphenylyl esters television pictures, control system and process for producing
3947375 | Mar 30, 1976 | Gray, et al. Liquid crystal materials and devices 4387039 | Jun 7, 1983 Trans-4-(trans-4"-alkylcyclohexyl)-cyclohexane said screen
3954653 | May 4, 1976 | Yamazaki. Liquid crystal composition having high dielectric nobiphenyl ester 5016988 | May 21, 1991 | Timura. Liquid crystal display device with a birefringent
anisotropy and display device incorporating same 4400293 | Aug 23, 1983 é st ohexylphenyl derivatives compensator
3960752 | Jun 1, 1976 | Klanderman, et al. Liquid crystal compositions 4415470 | Nov 15, 1983 | Eidenschink, et al. Liquid talline fluorine-containing 5016989 | May 21, 1991 | Okada. Liquid crystal element with improved contrast and
3975286 | Aug 17, 1976 | Oh. Low voltage actuated field effect liquid crystals cyclohexylbiphenyls and dielectrics and electro-optical display brightness
compositions and method of synthes elements based thereon 5122295 | Jun 16, 1992 | Weber, et al. Matrix liquid crystal display
4000084 | Dec 28, 1976 | Hsieh, et dl qumd crystal mixtures for electro-optical 4419263 | Dec 6, 1983 ot al. Liquid crystalline cyclohexylcarbonitrile 5124824 | Jun 23, 1992 | Kozaki, et al. Liquid crystal display device comprising a
display dev retardation compensation layer having a maximum principal
4011173 | Mar 8, 1977 | Stein ser. Modified nematic mixtures with 4422951 | Dec 27, 1983 t al. Liquid crystal benzene derivatives refractive index in the thickness direction
positive dielectric anisotropy 4455443 | Jun 19, 1984 | Takatsu, et al. Nematic halogen Compound 5171469 | Dec 15, 1992 | Hittich, et al. Liquid-crystal matrix display
4013582 | Mar 22, 1977 | Gavrilovic. Liquid crystal compounds and electro-optic 4456712 | Jun 26, 1984 | Christie, et al. Bismaleimide triazine composition 5283677 | Feb 1, 1994 e iqui <
devices incorporating them 4460770 | Jul 17, 1984 | Petrzilka, et al. Liquid crystal mixture between terminal groups
4017416 | Apr 12, 1977 | Inukai, et al. P-cyanophenyl 4-alkyl-4'-biphenylcarboxylate, 4472293 | Sep 18, 1984 | Sugimori, et al. High temperature liquid crystal substances of 5308538 | May 3, 1994 \\nbcr et al. Supertwist liquid-crystal display
method for preparing same and liquid crystal compositions four rings and liquid crystal compositions containing the same 5374374 | Dec 20, 1994 ystal display
using same 4472592 | Sep 18, 1984 | Takatsu, et al. Nematic liquid crystalline compounds 5543077 | Aug 6, 1996 : al composition
4020505 | Jun 14, 1977 | Ross, ct al. Novel liquid erystal compounds and electro-optic 4480117 | Oct 30, 1984 | Takatsu, et al. Nematic liquid crystalline compounds 5555116 | Sep 10, 1996 | Ishikawa, et al. Liquid crys splay having adjacent
devices incorporating them 4502974 | Mar 5, 1985 | Sugimori, et al. High temperature liquid-crystalline ester electrode terminals set equal in length
4032470 | Jun 28, 1977 | Bloom, et al. Electro-optic device compounds 5683624 | Nov 4, 1997 | Sekiguchi, et al. Liquid crystal composition
4077260 | Mar 7, 1978 | Gray, et al. Optically active cyano-biphenyl compounds and 4510069 | Apr 9, 1985 | Eidenschink, et al. Cyclohexane derivatives 5855814 | Jan 5, 1999 | Matsui, et al. Liquid crystal compositions and liquid crystal
liquid crystal materials containing them display elements
4082428 | Apr 4, 1978 | Hsu. L al composition and method
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n = 23219, m = 325624, transitivity weight
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4 N

Dense groups

Several notions were proposed 1n attempts to formally describe dense

groups in graphs.

Clique of order k£ is a maximal complete subgraph (isomorphic to K),
k> 3.

s-plexes, LS sets, lambda sets, cores, ...

For all of them, except for cores, it turned out that they are difficult to

detemine.

N
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/

Cores and generalized cores

ha

N

The notion of core was introduced
by Seidman in 1983. Let § =
(V, E) be a graph. A subgraph H =
(W, E|W) induced by the set W is
a k-core or a core of order k iff
Vv € W : degy(v) > k, and 'H is
a maximal subgraph with this prop-
erty. The core of maximum order is
also called the main core.

The core number of vertex v 1s the highest order of a core that contains
this vertex. The degree deg(v) can be: in-degree, out-degree, in-degree +

/

out-degree, etc., determining different types of cores.

~
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4 N

Properties of cores

From the figure, representing 0, 1, 2 and 3 core, we can see the following
properties of cores:

e The cores are nested: + < j =— H; C H;
e Cores are not necessarily connected subgraphs.

An efficient algorithm for determining the cores hierarchy is based on the
following property:

If from a given graph G = (V, £) we recursively delete all vertices,
and edges incident with them, of degree less than k, the remaining
graph is the k-core.

N /
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4 N

... Properties of cores

The cores, because they can be determined very efficiently, are one among
few concepts that provide us with meaningful decompositions of large
networks. We expect that different approaches to the analysis of large
networks can be built on this basis. For example: we get the following

bound on the chromatic number of a given graph G

X(G) <1+ core(G)

Cores can also be used to localize the search for interesting subnetworks in
large networks since: if it exists, a k-component is contained in a k-core;

and a k-clique is contained in a k-core.

For details see the paper.

N /
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4 N

Generalized cores

The notion of core can be generalized to networks. Let NV = (V, &, w)
be a network, where G = (V, &) is a graph and w : £ — IR is a function
assigning values to edges. A vertex property function on N, or a p-
function for short, is a function p(v,U), v € V, U C V with real values.

Let Ny(v) = N(v) N U. Besides degrees, here are some examples of
p-functions:

ps(v,U) = Z w(v,u), where w : £ — Ry
uE Ny (v)
pm(v,U) =  max w(v,u), wherew : £ — IR
ue Ny (v)
pr(v,U) = number of cycles of length k through vertex v in (U, E|U)

The subgraph H = (C, £]|C') induced by the set C' C V is a p-core at level
te Riff Vv e C:t < p(v,C) and C is a maximal such set. /
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/ Generalized cores algorithm \

The function p is monotone iff it has the property
Cir CCo=YveV: (phC) <pv,Cs))

The degrees and the functions pg, pys and pg are monotone. For a monotone
function the p-core at level £ can be determined, as in the ordinary case, by
successively deleting vertices with value of p lower than ¢; and the cores on
different levels are nested

t1 < to = Ht2 C Htl

The p-function is local iff p(v, U) = p(v, Ny (v)) .

The degrees, ps and pj; are local; but pg is not local for £ > 4. For a local
p-function an O(m max(A,logn)) algorithm for determining the p-core
levels exists, assuming that p(v, No(v)) can be computed in O(deg(v)).

kFor details see the paper. /
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pg-core at level 46 of Geombib network

%.Arkin

Q.M't hell
QII.Bern e

<}J.Eppstein

Cb.pobkin Q=

CEI.O’Rourke

‘J.Hershberger

C%.Chazelle

: .Aronov
(R seidel @ cuias Q.Snoeyink
.Edelsbrunner

-Sharir <JD.Agarwal
@.Pollack
O <%.Halperin

& weiz Q overmars

QII .vanKreveld

q:.Yap Wl.deBerg

<%.Schwarzkopf

Q.Matousek

Czi.lcking
C12.Klein

Q.Tollis %.Garg q_ Vismara

qﬂ : Q.diBattista
.Goodrich

Q.Tamassia

QS.Liotta
.J.Vitter

Q.Prepara&a

C}D. Bose

Q.Boissonnat
.Devillers

<R/I.Yvinec
C23.T0ussaint %.Teillaud

C2|.Urrutia C?]-CZ)/ZOWiCZ

<]?Gupta
<R/I.Smid <%.Janardan

® g

g .Schwerdt

NICTA Networks Workshop, June 2005

64




	Approaches to large networks
	Degrees
	Pajek and R
	Erdos and Renyi's random graphs
	Degree distribution

	Homomorphisms of graphs
	Clusters, clusterings, partitions, hierarchies
	Contraction of cluster
	Contracted clusters -- international trade

	Subgraph
	Cut-out -- induced subgraph: Snyder and Kick -- Africa

	Cuts
	Simple analysis using cuts
	Citation weights

	Walks
	Shortest paths
	Shortest paths

	Equivalence relations and Partitions
	Motorola's neighborhood

	Important vertices in network
	…Important vertices in network
	Normalization
	Degrees
	Closeness
	Betweeness
	Hubs and authorities
	…Hubs and authorities
	Clustering

	Connectivity
	Weak components
	Special graphs -- bipartite, tree
	Reduction (condensation)
	…internal structure of strong components
	…internal structure of strong components
	Bow-tie structure of the Web graph
	Biconnectivity

	k-connectivity
	Triangular and short cycle connectivities
	Triangular network
	Edge-cut at level 16 of triangular network of Erdos collaboration graph
	Triangular connectivity in directed graphs
	Arc-cut at level 11 of transitive triangular network of ODLIS dictionary

	Islands
	…Islands
	Some properties of vertex islands
	Algorithm for determining regular vertex islands
	Simple vertex islands
	Some properties of line islands
	Algorithm for determining regular line islands
	Simple line islands
	Islands - Reuters terror news
	Islands -- US patents
	Island size distribution
	Main path and main island of Patents
	Liquid crystal display
	Islands -- The Edinburgh Associative Thesaurus

	Dense groups
	Cores and generalized cores
	Properties of cores
	…Properties of cores
	6-core of Krebs Internet industries
	Generalized cores
	Generalized cores algorithm
	pS-core at level 46 of Geombib network


