

Classification: Extroverted Group Organization; Inward Aggressive.

Course on Social Network Analysis Graphs and Networks

Vladimir Batagelj

University of Ljubljana Slovenia

Outline

1	Graph	1
2	Graph / Sets	2
3	Graph / Neighbors	3
4	Graph / Matrix	4
5	Subgraph	5
6	Graph characteristics	6
7	Walks	7
8	Shortest paths	8
9	Equivalence relations and Partitions	9
10	Connectivity	10
11	Reduction	11
12	Biconnectivity	12

13	Special graphs	13
14	Krebs' Internet Industry Companies	14
15	Cores	15
17	6-core of Krebs' Internet Industry Companies	17
18	Networks	18
19	Computational Geometry Valued Core	19
20	Sources	20

Graph

actor – vertex, node relation – line, edge, arc, link, tie arc = directed line, (a, d)a is the *initial* vertex, d is the *terminal* vertex. edge = undirected line, (c: d)c and d are *end* vertices.

Graph / Sets

$$V = \{a, b, c, d, e, f, g, h, i, j, k, l\}$$

$$A = \{(a, b), (a, d), (a, f), (b, a), (b, f), (c, b), (c, c), (c, g), (c, g), (c, g), (e, c), (e, f), (e, h), (f, k), (h, d), (h, l), (j, h), (l, e), (l, g), (l, h)\}$$

$$E = \{(b: e), (c: d), (e: g), (f: h)\}$$

$$G = (V, A, E)$$

$$L = A \cup E$$

 $A = \emptyset$ - *undirected* graph; $E = \emptyset$ - *directed* graph. Pajek: GraphSet; TinaSet.

♦ ► ► ● ► ★ ≪ X

$$N_{A}(a) = \{b, d, f\}$$

$$N_{A}(b) = \{a, f\}$$

$$N_{A}(c) = \{b, c, g, g\}$$

$$N_{A}(c) = \{b, c, g, g\}$$

$$N_{E}(e) = \{b, g, g\}$$

$$N_{E}(e) = \{b, g, g\}$$

$$N_{E}(c) = \{d\}$$

$$N_{E}(f) = \{d\}$$

$$N_{E}(f) = \{h\}$$

$$N_{A}(j) = \{h\}$$

$$N_{A}(l) = \{e, g, h\}$$

Pajek: GraphList; TinaList.

$$N(v) = N_A(v) \cup N_E(v), \qquad = N_{out}(v), \quad N_{in}(v)$$

Star in v, S(v) is the set of all lines with v as their initial vertex.

 $\{b,g\}$

 $\{d\}$

Pajek: GraphMat; TinaMat, picture picture.

Graph G is *simple* if in the corresponding matrix all entries are 0 or 1.

A subgraph H = (V', L') of a given graph G = (V, L) is a graph which set of lines is a subset of set of lines of $G, L' \subseteq L$, its vertex set is a subset of set of vertices of $G, V' \subseteq V$, and it contains all end-vertices of L'.

A subgraph can be *induced* by a given subset of vertices or lines.

Graph characteristics

number of vertices n = |V|number of lines m = |L|*degree* of vertex v, deg(v) = number of lines with v as end-vertex; *indegree* of vertex v, indeg(v) =number of lines with v as terminal vertex (end-vertex is both initial and terminal);

outdegree of vertex v, outdeg(v) = number of lines with v as initial vertex.

$$n = 12, \ m = 23, \ \operatorname{indeg}(e) = 3, \ \operatorname{outdeg}(e) = 5, \ \operatorname{deg}(e) = 6$$
$$\sum_{v \in V} \operatorname{indeg}(v) = \sum_{v \in V} \operatorname{outdeg}(v) = |A| + 2|E|, \ \sum_{v \in V} \operatorname{deg}(v) = 2|L| - |E_0|$$

Walks

length |s| of the walk s is the number of lines it contains.

$$s = (j, h, l, g, e, f, h, l, e, c, b, a)$$

 $s| = 11$

A walk is *closed* iff its initial and terminal vertex coincide.

If we don't consider the direction of the lines in the walk we get a *semiwalk* or *chain*.

trail – walk with all lines different *path* – walk with all vertices different *cycle* – closed walk with all internal
vertices different

A graph is *acyclic* if it doesn't contain any cycle.

Shortest paths

A shortest path from u to v is also called a *geodesic* from u to v. Its length is denoted by d(u, v). If there is no walk from u to v then $d(u, v) = \infty$. d(j, a) = |(j, h, d, c, b, a)| = 5 $d(a, j) = \infty$ $\hat{d}(u, v) = \max(d(u, v), d(v, u))$ is a *distance*.

The *diameter* of a graph equals to the distance between the most distant pair of vertices: $D = \max_{u,v \in V} d(u, v)$.

Equivalence relations and Partitions

Let $\mathbf{C} = \{C_i\}$ be a set of subsets of $V, \emptyset \subset C_i \subseteq V$. **C** is a *partition* of V iff $\bigcup_i C_i = V$ and for $i \neq j, C_i \cap C_j = \emptyset$.

A relation R on V is an *equivalence* relation iff it is reflexive $\forall v \in V : vRv$, symmetric $\forall u, v \in V : uRv \Rightarrow vRu$, and transitive $\forall u, v, z \in V : uRz \land zRv \Rightarrow uRv$.

Each equivalence relation determines a partition into equivalence classes $[v] = \{u : vRu\}.$

Each partition C determines an equivalence relation $uRv \Leftrightarrow \exists C \in \mathbf{C} : u \in C \land v \in C.$

k-neighbors of v is the set of vertices on 'distance' k from v, $N^k(v) = \{u \in v : d(v, u) = k\}.$

The set of all k-neighbors, k = 0, 1, ... of v is a partition of V.

k-neighborhood of v, $N^{(k)}(v) = \{u \in v : d(v, u) \le k\}$.

♦ ► I ● ► I +

Connectivity

Vertex u is *reachable* from vertex v iff there exists a walk with initial vertex vand terminal vertex u. Vertex v is *weakly connected* with vertex u iff there exists a semiwalk with vand u as its end-vertices. Vertex v is *strongly connected* with ver-

tex u iff they are mutually reachable.

Weak and strong connectivity are equivalence relations.

Equivalence classes induce weak/strong *components*.

 $(u, v) \in A \Rightarrow i(u) < i(v).$

Biconnectivity

Vertices u and v are *biconnected* iff they are connected (in both directions) by two independent (no common internal vertex) paths.

Biconnectivity determines a partition of the set of lines.

A vertex is an *articulation* vertex iff its deletion increases the number of weak components in a graph.

A weakly connected graph G is a *tree* iff it doesn't contain loops and semicycles of length at least 3.

A graph G = (V, L) is *bipartite* iff its set of vertices V can be partitioned into two sets V_1 and V_2 such that every line from L has one end-vertex in V_1 and the other in V_2 .

A simple undirected graph is *complete*, K_n , iff it contains all possible edges.

Krebs' Internet Industry Companies

This network shows a subset of the total internet industry during the period from 1998 to 2001, n =219, m = 631.

Two companies are connected with a line if they have announced a joint venture, strategic alliance or other partnership (red - content, blue - infrastructure, yellow - commerce).

Network source: http://www.orgnet.com/netindustry.html.

The notion of core was introduced by Seidman in 1983.

A subgraph $\mathbf{H} = (W, L|W)$ induced by the set W in a graph $\mathbf{G} = (V, L)$ is a *k*-core or a core of order k iff $\forall v \in W : \deg_H(v) \geq k$, and \mathbf{H} is a maximum subgraph with this property.

...Cores

The core of maximum order is also called the *main* core. The *core number* of vertex v is the highest order of a core that contains this vertex. The degree deg(v) can be: in-degree, out-degree, in-degree + out-degree, ..., determining different types of cores.

- The cores are nested: $i < j \implies \mathbf{H}_j \subseteq \mathbf{H}_i$
- Cores are not necessarily connected subgraphs.

The notion of cores can be generalized to *valued cores*.

Networks

A graph with additional information on vertices and/or lines is called a *network*.

In Pajek this information is represented using *vectors* (numerical properties of vertices) and *partitions* (categorical/nominal properties of vertices). Numerical values can be assigned also to lines – *line values*.

Example: Authors collaboration network based on the *Computational Geometry Database*. Two authors are linked with an edge, iff they wrote a common paper. The weight of the edge is the number of publications they wrote together.

Problem of cleaning. Different names: Pankaj K. Agarwal, P. Agarwal, Pankaj Agarwal, and P.K. Agarwal.

 $n = 9072, m = 13567/22577 \rightarrow n' = 7343, m' = 11898.$

Sources

```
Vladimir Batagelj, Andrej Mrvar: Pajek.
```

```
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
```

Vladimir Batagelj: Slides on network analysis. http://vlado.fmf.uni-lj.si/pub/networks/doc/

Vladimir Batagelj: Papers on network analysis. http://vlado.fmf.uni-lj.si/vlado/vladodat.htm

Andrej Mrvar: Social network analysis.

http://mrvar.fdv.uni-lj.si/sola/info4/programe.htm

B. Jones: Computational geometry database.

http://compgeom.cs.uiuc.edu/~jeffe/compgeom/biblios.html
ftp://ftp.cs.usask.ca/pub/geometry/.

