

Course on Social Network Analysis

Graphs and Networks

Vladimir Batagelj
University of Ljubljana Slovenia

Padova, April 10-11, 2003

Outline

1 Graph 1
2 Graph / Sets 2
3 Graph / Neighbors 3
4 Graph / Matrix 4
5 Subgraph 5
6 Graph characteristics 6
7 Walks 7
8 Shortest paths 8
9 Equivalence relations and Partitions 9
10 Connectivity 10
11 Reduction 11
12 Biconnectivity 12
13 Special graphs 13
14 Krebs' Internet Industry Companies 14
15 Cores 15
17 6-core of Krebs' Internet Industry Companies 17
18 Networks 18
19 Computational Geometry Valued Core 19
20 Sources 20

Graph

actor - vertex, node
relation - line, edge, arc, link, tie
$\operatorname{arc}=$ directed line, (a, d)
a is the initial vertex,
d is the terminal vertex.
edge $=$ undirected line, $(c: d)$
c and d are end vertices.

Graph / Sets

$$
\begin{aligned}
V= & \{a, b, c, d, e, f, g, h, i, j, k, l\} \\
A= & \{(a, b),(a, d),(a, f),(b, a), \\
& (b, f),(c, b),(c, c),(c, g), \\
& (c, g),(e, c),(e, f),(e, h), \\
& (f, k),(h, d),(h, l),(j, h), \\
& (l, e),(l, g),(l, h)\} \\
E= & \{(b: e),(c: d),(e: g),(f: h)\} \\
G= & (V, A, E) \\
L= & A \cup E
\end{aligned}
$$

$A=\emptyset$ - undirected graph; $E=\emptyset$ - directed graph.
Pajek: GraphSet; TinaSet.

Graph / Neighbors

$$
\begin{array}{ll}
N_{A}(a)=\{b, d, f\} & \\
N_{A}(b)=\{a, f\} & \\
N_{A}(c)=\{b, c, g, g\} & \\
N_{A}(e)=\{c, f, h\} & N_{E}(e)=\{b, g\} \\
N_{A}(f)=\{k\} & N_{E}(c)=\{d\} \\
N_{A}(h)=\{d, l\} & N_{E}(f)=\{h\} \\
N_{A}(j)=\{h\} & \\
N_{A}(l)=\{e, g, h\} &
\end{array}
$$

Pajek: GraphList; TinaList.

$$
N(v)=N_{A}(v) \cup N_{E}(v), \quad=N_{o u t}(v), N_{\text {in }}(v)
$$

Star in $v, S(v)$ is the set of all lines with v as their initial vertex.

Graph / Matrix

	a	b	c	d	e	f	g	h	i	j	k	l
a	0	1	0	1	0	1	0	0	0	0	0	0
b	1	0	0	0	1	1	0	0	0	0	0	0
c	0	1	1	1	0	0	2	0	0	0	0	0
d	0	0	1	0	0	0	0	0	0	0	0	0
e	0	1	1	0	0	1	1	1	0	0	0	0
f	0	0	0	0	0	0	0	1	0	0	1	0
g	0	0	0	0	1	0	0	0	0	0	0	0
h	0	0	0	1	0	1	0	0	0	0	0	1
i	0	0	0	0	0	0	0	0	0	0	0	0
j	0	0	0	0	0	0	0	1	0	0	0	0
k	0	0	0	0	0	0	0	0	0	0	0	0
l	0	0	0	0	1	0	1	1	0	0	0	0

Pajek: GraphMat; TinaMat, picture picture.
Graph G is simple if in the corresponding matrix all entries are 0 or 1.

Subgraph

A subgraph $H=\left(V^{\prime}, L^{\prime}\right)$ of a given graph $G=(V, L)$ is a graph which set of lines is a subset of set of lines of $G, L^{\prime} \subseteq L$, its vertex set is a subset of set of vertices of $G, V^{\prime} \subseteq V$, and it contains all end-vertices of L^{\prime}.

A subgraph can be induced by a given subset of vertices or lines.

Graph characteristics

 number of vertices $n=|V|$ number of lines $m=|L|$ degree of vertex $v, \operatorname{deg}(v)=$ number of lines with v as end-vertex; indegree of vertex $v, \operatorname{indeg}(v)=$ number of lines with v as terminal vertex (end-vertex is both initial and terminal);
outdegree of vertex v, outdeg $(v)=$ number of lines with v as initial vertex.

$$
\begin{gathered}
n=12, m=23, \operatorname{indeg}(e)=3, \operatorname{outdeg}(e)=5, \operatorname{deg}(e)=6 \\
\sum_{v \in V} \operatorname{indeg}(v)=\sum_{v \in V} \operatorname{outdeg}(v)=|A|+2|E|, \sum_{v \in V} \operatorname{deg}(v)=2|L|-\left|E_{0}\right|
\end{gathered}
$$

Walks

length $|s|$ of the walk s is the number of lines it contains.

$s=(j, h, l, g, e, f, h, l, e, c, b, a)$
$|s|=11$
A walk is closed iff its initial and terminal vertex coincide.

If we don't consider the direction of the lines in the walk we get a semiwalk or chain.
trail - walk with all lines different
path - walk with all vertices different cycle - closed walk with all internal vertices different
A graph is acyclic if it doesn't contain any cycle.

Shortest paths

A shortest path from u to v is also called a geodesic from u to v. Its length is denoted by $d(u, v)$. If there is no walk from u to v then $d(u, v)=\infty$. $d(j, a)=|(j, h, d, c, b, a)|=5$ $d(a, j)=\infty$ $\hat{d}(u, v)=\max (d(u, v), d(v, u))$ is a distance.

The diameter of a graph equals to the distance between the most distant pair of vertices: $D=\max _{u, v \in V} d(u, v)$.

Equivalence relations and Partitions

Let $\mathbf{C}=\left\{C_{i}\right\}$ be a set of subsets of $V, \emptyset \subset C_{i} \subseteq V . \mathbf{C}$ is a partition of V iff $\bigcup_{i} C_{i}=V$ and for $i \neq j, C_{i} \cap C_{j}=\emptyset$.
A relation R on V is an equivalence relation iff it is reflexive $\forall v \in V: v R v$, symmetric $\forall u, v \in V: u R v \Rightarrow v R u$, and transitive $\forall u, v, z \in V: u R z \wedge z R v \Rightarrow u R v$.

Each equivalence relation determines a partition into equivalence classes $[v]=\{u: v R u\}$.
Each partition \mathbf{C} determines an equivalence relation $u R v \Leftrightarrow \exists C \in \mathbf{C}: u \in C \wedge v \in C$.
k-neighbors of v is the set of vertices on 'distance' k from $v, N^{k}(v)=$ $\{u \in v: d(v, u)=k\}$.

The set of all k-neighbors, $k=0,1, \ldots$ of v is a partition of V.
k-neighborhood of $v, N^{(k)}(v)=\{u \in v: d(v, u) \leq k\}$.

Connectivity

Vertex u is reachable from vertex v iff there exists a walk with initial vertex v and terminal vertex u.

Vertex v is weakly connected with vertex u iff there exists a semiwalk with v and u as its end-vertices.

Vertex v is strongly connected with vertex u iff they are mutually reachable.

Weak and strong connectivity are equivalence relations.
Equivalence classes induce weak/strong components.

Reduction

If we shrink every strong component of a given graph into a vertex, delete all loops and identify parallel arcs the obtained reduced graph is acyclic. For every acyclic graph an ordering / level function $i: V \rightarrow \mathbb{N}$ exists s.t. $(u, v) \in A \Rightarrow i(u)<i(v)$.

Biconnectivity

Vertices u and v are biconnected iff they are connected (in both directions) by two independent (no common internal vertex) paths.

Biconnectivity determines a partition of the set of lines.
A vertex is an articulation vertex iff its deletion increases the number of weak components in a graph.

Special graphs

A weakly connected graph G is a tree iff it doesn't contain loops and semicycles of length at least 3 .

A graph $G=(V, L)$ is bipartite iff its set of vertices V can be partitioned into two sets V_{1} and V_{2} such that every line from L has one end-vertex in V_{1} and the other in V_{2}.

A simple undirected graph is complete, K_{n}, iff it contains all possible edges.

Krebs' Internet Industry Companies

This network shows a subset of the total internet industry during the period from 1998 to 2001, $n=$ $219, m=631$.
Two companies are connected with a line if they have announced a joint venture, strategic alliance or other partnership (red - content, blue - infrastructure, yellow

- commerce).

Network source: http://www.orgnet.com/netindustry.html.

Cores

The notion of core was introduced by Seidman in 1983.

A subgraph $\mathbf{H}=(W, L \mid W)$ induced by the set W in a graph $\mathbf{G}=(V, L)$ is a k-core or a core of order k iff $\forall v \in W: \operatorname{deg}_{H}(v) \geq k$, and \mathbf{H} is a maximum subgraph with this property.

... Cores

The core of maximum order is also called the main core. The core number of vertex v is the highest order of a core that contains this vertex. The degree $\operatorname{deg}(v)$ can be: in-degree, out-degree, in-degree + out-degree, \ldots, determining different types of cores.

- The cores are nested: $i<j \Longrightarrow \mathbf{H}_{j} \subseteq \mathbf{H}_{i}$
- Cores are not necessarily connected subgraphs.

The notion of cores can be generalized to valued cores.

6-core of Krebs' Internet Industry Companies

Networks

A graph with additional information on vertices and/or lines is called a network.

In Pajek this information is represented using vectors (numerical properties of vertices) and partitions (categorical/nominal properties of vertices).
Numerical values can be assigned also to lines - line values.
Example: Authors collaboration network based on the Computational Geometry Database. Two authors are linked with an edge, iff they wrote a common paper. The weight of the edge is the number of publications they wrote together.

Problem of cleaning. Different names: Pankaj K. Agarwal, P. Agarwal, Pankaj Agarwal, and P.K. Agarwal.
$n=9072, m=13567 / 22577 \rightarrow n^{\prime}=7343, m^{\prime}=11898$.

Computational Geometry Valued Core

Sources

Vladimir Batagelj, Andrej Mrvar: Pajek.
http://vlado.fmf.uni-lj.si/pub/networks/pajek/

Vladimir Batagelj: Slides on network analysis.
http://vlado.fmf.uni-lj.si/pub/networks/doc/

Vladimir Batagelj: Papers on network analysis.
http://vlado.fmf.uni-lj.si/vlado/vladodat.htm

Andrej Mrvar: Social network analysis.
http://mrvar.fdv.uni-lj.si/sola/info4/programe.htm
B. Jones: Computational geometry database.
http://compgeom.cs.uiuc.edu/~jeffe/compgeom/biblios.html ftp://ftp.cs.usask.ca/pub/geometry/.

