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Graph

actor – vertex, node

relation – line, edge, arc, link,

tie

arc = directed line,(a, d)
a is theinitial vertex,

d is theterminalvertex.

edge= undirected line,(c: d)
c andd areendvertices.
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Graph / Sets

V = {a, b, c, d, e, f, g, h, i, j, k, l}

A = {(a, b), (a, d), (a, f), (b, a),

(b, f), (c, b), (c, c), (c, g),

(c, g), (e, c), (e, f), (e, h),

(f, k), (h, d), (h, l), (j, h),

(l, e), (l, g), (l, h)}

E = {(b: e), (c: d), (e: g), (f :h)}

G = (V,A, E)

L = A ∪ E

A = ∅ – undirectedgraph;E = ∅ – directedgraph.

Pajek:GraphSet ; TinaSet .
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Graph / Neighbors

NA(a) = {b, d, f}
NA(b) = {a, f}
NA(c) = {b, c, g, g}
NA(e) = {c, f, h}
NA(f) = {k}
NA(h) = {d, l}
NA(j) = {h}
NA(l) = {e, g, h}

NE(e) = {b, g}
NE(c) = {d}
NE(f) = {h}

Pajek:GraphList ; TinaList .

N(v) = NA(v) ∪NE(v), = Nout(v), Nin(v)

Star in v, S(v) is the set of all lines withv as their initial vertex.
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Graph / Matrix
a b c d e f g h i j k l

a 0 1 0 1 0 1 0 0 0 0 0 0

b 1 0 0 0 1 1 0 0 0 0 0 0

c 0 1 1 1 0 0 2 0 0 0 0 0

d 0 0 1 0 0 0 0 0 0 0 0 0

e 0 1 1 0 0 1 1 1 0 0 0 0

f 0 0 0 0 0 0 0 1 0 0 1 0

g 0 0 0 0 1 0 0 0 0 0 0 0

h 0 0 0 1 0 1 0 0 0 0 0 1

i 0 0 0 0 0 0 0 0 0 0 0 0

j 0 0 0 0 0 0 0 1 0 0 0 0

k 0 0 0 0 0 0 0 0 0 0 0 0

l 0 0 0 0 1 0 1 1 0 0 0 0

Pajek:GraphMat ; TinaMat , picturepicture .

GraphG is simpleif in the corresponding matrix all entries are0 or 1.
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Subgraph

A subgraphH = (V ′, L′) of a given graphG = (V,L) is a graph which set

of lines is a subset of set of lines ofG, L′ ⊆ L, its vertex set is a subset of

set of vertices ofG, V ′ ⊆ V , and it contains all end-vertices ofL′.

A subgraph can beinducedby a given subset of vertices or lines.
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Graph characteristics
number of verticesn = |V |
number of linesm = |L|
degreeof vertexv, deg(v) = number

of lines withv as end-vertex;

indegree of vertex v, indeg(v) =
number of lines withv as terminal

vertex (end-vertex is both initial and

terminal);

outdegreeof vertex v, outdeg(v) =
number of lines withv as initial vertex.

n = 12, m = 23, indeg(e) = 3, outdeg(e) = 5, deg(e) = 6∑
v∈V

indeg(v) =
∑
v∈V

outdeg(v) = |A|+ 2|E|,
∑
v∈V

deg(v) = 2|L| − |E0|
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Walks
length |s| of the walks is the number

of lines it contains.

s = (j, h, l, g, e, f, h, l, e, c, b, a)
|s| = 11
A walk is closediff its initial and ter-

minal vertex coincide.

If we don’t consider the direction of the

lines in the walk we get asemiwalkor

chain.

trail – walk with all lines different

path– walk with all vertices different

cycle – closed walk with all internal

vertices different
A graph isacyclic if it doesn’t contain any cycle.
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Shortest paths

A shortest path fromu to v is also

called ageodesicfrom u to v. Its

length is denoted byd(u, v).
If there is no walk fromu to v then

d(u, v) = ∞.

d(j, a) = |(j, h, d, c, b, a)| = 5
d(a, j) = ∞
d̂(u, v) = max(d(u, v), d(v, u))
is adistance.

Thediameterof a graph equals to the distance between the most distant pair

of vertices:D = maxu,v∈V d(u, v).
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Equivalence relations and Partitions
Let C = {Ci} be a set of subsets ofV , ∅ ⊂ Ci ⊆ V . C is apartition of V

iff
⋃

i Ci = V and fori 6= j, Ci ∩ Cj = ∅.

A relationR onV is anequivalencerelation iff it is
reflexive∀v ∈ V : vRv, symmetric∀u, v ∈ V : uRv ⇒ vRu, and
transitive∀u, v, z ∈ V : uRz ∧ zRv ⇒ uRv.

Each equivalence relation determines a partition into equivalence classes
[v] = {u : vRu}.

Each partitionC determines an equivalence relation
uRv ⇔ ∃C ∈ C : u ∈ C ∧ v ∈ C.

k-neighborsof v is the set of vertices on ’distance’k from v, Nk(v) =
{u ∈ v : d(v, u) = k}.

The set of allk-neighbors,k = 0, 1, ... of v is a partition ofV .

k-neighborhoodof v, N (k)(v) = {u ∈ v : d(v, u) ≤ k}.
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Connectivity

Vertexu is reachablefrom vertexv iff

there exists a walk with initial vertexv

and terminal vertexu.

Vertexv is weakly connectedwith ver-

tex u iff there exists a semiwalk withv

andu as its end-vertices.

Vertexv is strongly connectedwith ver-

texu iff they are mutually reachable.

Weak and strong connectivity are equivalence relations.

Equivalence classes induce weak/strongcomponents.
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Reduction

If we shrink every strong component of a given graph into a vertex, delete

all loops and identify parallel arcs the obtainedreducedgraph is acyclic.

For every acyclic graph anordering / level function i : V → IN exists s.t.

(u, v) ∈ A ⇒ i(u) < i(v).
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Biconnectivity
Verticesu andv arebiconnectediff they are connected (in both directions)

by two independent (no common internal vertex) paths.

Biconnectivity determines a partition of the set of lines.

A vertex is anarticulation vertex iff its deletion increases the number of

weak components in a graph.
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Special graphs

A weakly connected graphG is a tree iff it doesn’t contain loops and

semicycles of length at least 3.

A graphG = (V,L) is bipartite iff its set of verticesV can be partitioned

into two setsV1 andV2 such that every line fromL has one end-vertex in

V1 and the other inV2.

A simple undirected graph iscomplete, Kn, iff it contains all possible

edges.
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Krebs’ Internet Industry Companies

This network shows a subset of

the total internet industry during

the period from 1998 to 2001,n =
219, m = 631.

Two companies are connected

with a line if they have announced

a joint venture, strategic alliance

or other partnership (red - con-

tent, blue - infrastructure, yellow

- commerce).

Network source:http://www.orgnet.com/netindustry.html .
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Cores
The notion of core was introduced by Seidman in 1983.

A subgraphH = (W,L|W ) induced by the setW in a graphG = (V,L)
is ak-coreor acore of orderk iff ∀v ∈ W : degH(v) ≥ k, andH is a

maximum subgraph with this property.
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. . . Cores

The core of maximum order is also called themaincore. Thecore number

of vertexv is the highest order of a core that contains this vertex. The

degreedeg(v) can be: in-degree, out-degree, in-degree+ out-degree, . . . ,

determining different types of cores.

• The cores are nested:i < j =⇒ Hj ⊆ Hi

• Cores are not necessarily connected subgraphs.

The notion of cores can be generalized tovalued cores.
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6-core of Krebs’ Internet Industry Companies
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Networks
A graph with additional information on vertices and/or lines is called a

network.

In Pajek this information is represented usingvectors(numerical properties

of vertices) andpartitions (categorical/nominal properties of vertices).

Numerical values can be assigned also to lines –line values.

Example: Authors collaboration network based on theComputational

Geometry Database. Two authors are linked with an edge, iff they wrote a

common paper. The weight of the edge is the number of publications they

wrote together.

Problem of cleaning. Different names: Pankaj K. Agarwal, P. Agarwal,

Pankaj Agarwal, and P.K. Agarwal.

n = 9072, m = 13567/22577→ n′ = 7343, m′ = 11898.
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Computational Geometry Valued Core
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Sources
Vladimir Batagelj, Andrej Mrvar: Pajek.

http://vlado.fmf.uni-lj.si/pub/networks/pajek/

Vladimir Batagelj: Slides on network analysis.

http://vlado.fmf.uni-lj.si/pub/networks/doc/

Vladimir Batagelj: Papers on network analysis.

http://vlado.fmf.uni-lj.si/vlado/vladodat.htm

Andrej Mrvar: Social network analysis.

http://mrvar.fdv.uni-lj.si/sola/info4/programe.htm

B. Jones: Computational geometry database.

http://compgeom.cs.uiuc.edu/˜jeffe/compgeom/biblios.html

ftp://ftp.cs.usask.ca/pub/geometry/ .
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